112 research outputs found

    Approximate Two-Party Privacy-Preserving String Matching with Linear Complexity

    Full text link
    Consider two parties who want to compare their strings, e.g., genomes, but do not want to reveal them to each other. We present a system for privacy-preserving matching of strings, which differs from existing systems by providing a deterministic approximation instead of an exact distance. It is efficient (linear complexity), non-interactive and does not involve a third party which makes it particularly suitable for cloud computing. We extend our protocol, such that it mitigates iterated differential attacks proposed by Goodrich. Further an implementation of the system is evaluated and compared against current privacy-preserving string matching algorithms.Comment: 6 pages, 4 figure

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac

    Privacy-preserving queries on encrypted databases

    Get PDF
    In today's Internet, with the advent of cloud computing, there is a natural desire for enterprises, organizations, and end users to outsource increasingly large amounts of data to a cloud provider. Therefore, ensuring security and privacy is becoming a significant challenge for cloud computing, especially for users with sensitive and valuable data. Recently, many efficient and scalable query processing methods over encrypted data have been proposed. Despite that, numerous challenges remain to be addressed due to the high complexity of many important queries on encrypted large-scale datasets. This thesis studies the problem of privacy-preserving database query processing on structured data (e.g., relational and graph databases). In particular, this thesis proposes several practical and provable secure structured encryption schemes that allow the data owner to encrypt data without losing the ability to query and retrieve it efficiently for authorized clients. This thesis includes two parts. The first part investigates graph encryption schemes. This thesis proposes a graph encryption scheme for approximate shortest distance queries. Such scheme allows the client to query the shortest distance between two nodes in an encrypted graph securely and efficiently. Moreover, this thesis also explores how the techniques can be applied to other graph queries. The second part of this thesis proposes secure top-k query processing schemes on encrypted relational databases. Furthermore, the thesis develops a scheme for the top-k join queries over multiple encrypted relations. Finally, this thesis demonstrates the practicality of the proposed encryption schemes by prototyping the encryption systems to perform queries on real-world encrypted datasets

    EsPRESSo: Efficient Privacy-Preserving Evaluation of Sample Set Similarity

    Full text link
    Electronic information is increasingly often shared among entities without complete mutual trust. To address related security and privacy issues, a few cryptographic techniques have emerged that support privacy-preserving information sharing and retrieval. One interesting open problem in this context involves two parties that need to assess the similarity of their datasets, but are reluctant to disclose their actual content. This paper presents an efficient and provably-secure construction supporting the privacy-preserving evaluation of sample set similarity, where similarity is measured as the Jaccard index. We present two protocols: the first securely computes the (Jaccard) similarity of two sets, and the second approximates it, using MinHash techniques, with lower complexities. We show that our novel protocols are attractive in many compelling applications, including document/multimedia similarity, biometric authentication, and genetic tests. In the process, we demonstrate that our constructions are appreciably more efficient than prior work.Comment: A preliminary version of this paper was published in the Proceedings of the 7th ESORICS International Workshop on Digital Privacy Management (DPM 2012). This is the full version, appearing in the Journal of Computer Securit

    Retrieving Data from Encrypted file by using Cosine Similarity

    Get PDF
    Nowadays every user who uses Internet wants to search for anything and everything using Search Engines. This is the need for everyone. To engineer a search engine is a challenging task. Search engines index tens to hundreds of millions of files involving a comparable number of distinct terms. They answer tens of millions of queries every day. Due to rapid advance in technology and need for information security, creating a web search engine today is very different from three years ago. The overall goal of this project is to develop a scalable, high performance search engine which searches the encrypted data without decryption. The main focus is on the algorithmic challenges and encryption while supporting fast searches on it. To develop this project, an applied ranking algorithm to give better results to the user and also used other algorithms to encrypt the data stored. To ease for searching of various information over the data by giving search keywords requires software. The search engine software ensures the end user to get the information by accessing the data specified in the database
    corecore