76 research outputs found

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Physical-Layer Security, Quantum Key Distribution and Post-quantum Cryptography

    Get PDF
    The growth of data-driven technologies, 5G, and the Internet place enormous pressure on underlying information infrastructure. There exist numerous proposals on how to deal with the possible capacity crunch. However, the security of both optical and wireless networks lags behind reliable and spectrally efficient transmission. Significant achievements have been made recently in the quantum computing arena. Because most conventional cryptography systems rely on computational security, which guarantees the security against an efficient eavesdropper for a limited time, with the advancement in quantum computing this security can be compromised. To solve these problems, various schemes providing perfect/unconditional security have been proposed including physical-layer security (PLS), quantum key distribution (QKD), and post-quantum cryptography. Unfortunately, it is still not clear how to integrate those different proposals with higher level cryptography schemes. So the purpose of the Special Issue entitled “Physical-Layer Security, Quantum Key Distribution and Post-quantum Cryptography” was to integrate these various approaches and enable the next generation of cryptography systems whose security cannot be broken by quantum computers. This book represents the reprint of the papers accepted for publication in the Special Issue

    Blockchain-enabled cybersecurity provision for scalable heterogeneous network: A comprehensive survey

    Get PDF
    Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance, transportation, healthcare, education, and supply chain management. Blockchain interactions in the heterogeneous network have fascinated more attention due to the authentication of their digital application exchanges. However, the exponential development of storage space capabilities across the blockchain-based heterogeneous network has become an important issue in preventing blockchain distribution and the extension of blockchain nodes. There is the biggest challenge of data integrity and scalability, including significant computing complexity and inapplicable latency on regional network diversity, operating system diversity, bandwidth diversity, node diversity, etc., for decision-making of data transactions across blockchain-based heterogeneous networks. Data security and privacy have also become the main concerns across the heterogeneous network to build smart IoT ecosystems. To address these issues, today’s researchers have explored the potential solutions of the capability of heterogeneous network devices to perform data transactions where the system stimulates their integration reliably and securely with blockchain. The key goal of this paper is to conduct a state-of-the-art and comprehensive survey on cybersecurity enhancement using blockchain in the heterogeneous network. This paper proposes a full-fledged taxonomy to identify the main obstacles, research gaps, future research directions, effective solutions, and most relevant blockchain-enabled cybersecurity systems. In addition, Blockchain based heterogeneous network framework with cybersecurity is proposed in this paper to meet the goal of maintaining optimal performance data transactions among organizations. Overall, this paper provides an in-depth description based on the critical analysis to overcome the existing work gaps for future research where it presents a potential cybersecurity design with key requirements of blockchain across a heterogeneous network
    corecore