937 research outputs found

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike

    Secure Precise Clock Synchronization for Interconnected Body Area Networks

    Get PDF
    Secure time synchronization is a paramount service for wireless sensor networks (WSNs) constituted by multiple interconnected body area networks (BANs). We propose a novel approach to securely and efficiently synchronize nodes at BAN level and/or WSN level. Each BAN develops its own notion of time. To this effect, the nodes of a BAN synchronize with their BAN controller node. Moreover, controller nodes of different BANs cooperate to agree on a WSN global and/or to transfer UTC time. To reduce the number of exchanged synchronization messages, we use an environmental-aware time prediction algorithm. The performance analysis in this paper shows that our approach exhibits very advanced security, accuracy, precision, and low-energy trade-off. For comparable precision, our proposal outstands related clock synchronization protocols in energy efficiency and risk of attacks. These results are based on computations

    Secure Cluster Head Sensor Elections Using Signal Strength Estimation and Ordered Transmissions

    Get PDF
    In clustered sensor networks, electing CHs (Cluster Heads) in a secure manner is very important because they collect data from sensors and send the aggregated data to the sink. If a compromised node is elected as a CH, it can illegally acquire data from all the members and even send forged data to the sink. Nevertheless, most of the existing CH election schemes have not treated the problem of the secure CH election. Recently, random value based protocols have been proposed to resolve the secure CH election problem. However, these schemes cannot prevent an attacker from suppressing its contribution for the change of CH election result and from selectively forwarding its contribution for the disagreement of CH election result. In this paper, we propose a modified random value scheme to prevent these disturbances. Our scheme dynamically adjusts the forwarding order of contributions and discards a received contribution when its signal strength is lower than the specified level to prevent these malicious actions. The simulation results have shown that our scheme effectively prevents attackers from changing and splitting an agreement of CH election result. Also, they have shown that our scheme is relatively energy-efficient than other schemes

    Fly-By-Wireless for Next Generation Aircraft: Challenges and Potential solutions

    Get PDF
    ”Fly-By-Wireless” paradigm based on wireless connectivity in aircraft has the potential to improve efficiency and flexibility, while reducing weight, fuel consumption and maintenance costs. In this paper, first, the opportunities and challenges for wireless technologies in safety-critical avionics context are discussed. Then, the assessment of such technologies versus avionics requirements is provided in order to select the most appropriate one for a wireless aircraft application. As a result, the design of a Wireless Avionics Network based on Ultra WideBand technology is investigated, considering the issues of determinism, reliability and security

    Key Management Building Blocks for Wireless Sensor Networks

    Get PDF
    Cryptography is the means to ensure data confidentiality, integrity and authentication in wireless sensor networks (WSNs). To use cryptography effectively however, the cryptographic keys need to be managed properly. First of all, the necessary keys need to be distributed to the nodes before the nodes are deployed in the field, in such a way that any two or more nodes that need to communicate securely can establish a session key. Then, the session keys need to be refreshed from time to time to prevent birthday attacks. Finally, in case any of the nodes is found to be compromised, the key ring of the compromised node needs to be revoked and some or all of the compromised keys might need to be replaced. These processes, together with the policies and techniques needed to support them, are called key management. The facts that WSNs (1) are generally not tamper-resistant; (2) operate unattended; (3) communicate in an open medium; (4) have no fixed infrastructure and pre-configured topology; (5) have severe hardware and resource constraints, present unique challenges to key management. In this article, we explore techniques for meeting these challenges. What distinguishes our approach from a routine literature survey is that, instead of comparing various known schemes, we set out to identify the basic cryptographic principles, or building blocks that will allow practitioners to set up their own key management framework using these building blocks

    Shake well before use: Authentication based on Accelerometer Data

    Get PDF
    Small, mobile devices without user interfaces, such as Bluetooth headsets, often need to communicate securely over wireless networks. Active attacks can only be prevented by authenticating wireless communication, which is problematic when devices do not have any a priori information about each other. We introduce a new method for device-to-device authentication by shaking devices together. This paper describes two protocols for combining cryptographic authentication techniques with known methods of accelerometer data analysis to the effect of generating authenticated, secret keys. The protocols differ in their design, one being more conservative from a security point of view, while the other allows more dynamic interactions. Three experiments are used to optimize and validate our proposed authentication method

    Randomized and efficient time synchronization in dynamic wireless sensor networks: a gossip-consensus-based approach

    Get PDF
    This paper proposes novel randomized gossip-consensus-based sync (RGCS) algorithms to realize efficient time correction in dynamic wireless sensor networks (WSNs). First, the unreliable links are described by stochastic connections, reflecting the characteristic of changing connectivity gleaned from dynamicWSNs. Secondly, based on the mutual drift estimation, each pair of activated nodes fully adjusts clock rate and offset to achieve network-wide time synchronization by drawing upon the gossip consensus approach. The converge-to-max criterion is introduced to achieve a much faster convergence speed. The theoretical results on the probabilistic synchronization performance of the RGCS are presented. Thirdly, a Revised-RGCS is developed to counteract the negative impact of bounded delays, because the uncertain delays are always present in practice and would lead to a large deterioration of algorithm performances. Finally, extensive simulations are performed on the MATLAB and OMNeT++ platform for performance evaluation. Simulation results demonstrate that the proposed algorithms are not only efficient for synchronization issues required for dynamic topology changes but also give a better performance in term of converging speed, collision rate, and the robustness of resisting delay, and outperform other existing protocols
    corecore