1,289 research outputs found

    Implementation and Provisioning of Federated Networks in Hybrid Clouds (pre-print)

    Get PDF
    Federated cloud networking is needed to allow the seamless and efficient interconnection of resources distributed among different clouds. This work introduces a new cloud network federation framework for the automatic provision of Layer 2 (L2) and layer 3 (L3) virtual networks to interconnect geographically distributed cloud infrastructures in a hybrid cloud scenario. After a revision of existing encapsulation technologies to implement L2 and L3 overlay networks, the paper analyzes the main topologies that can be used to construct federated network overlays within hybrid clouds. In order to demonstrate the proposed solution and compare the different topologies, the article shows a proof-of-concept of a real federated network deployment in a hybrid cloud, which spans a local private cloud, managed with OpenNebula, and two public clouds, two different regions of mazon EC2. Results show that L2 and L3 overlay connectivity can be achieved with a minimal bandwidth overhead, lower than 10%

    BEACON: A Cloud Network Federation Framework

    Get PDF
    This paper presents the BEACON Framework, which will enable the provision and management of cross-site virtual networks for federated cloud infrastructures in order to support the automated deployment of applications and services across different clouds and datacenters. The proposed framework will support different federation architectures, going from tightly coupled (datacenter federation) to loosely coupled (cloud federation and multi-cloud orchestration) architectures, and will enable the creation of Layer 2 and Layer 3 overlay networks to interconnect remote resources located at different cloud sites. A high level description of the main components of the BEACON framework is also introduced

    Interoperable Federated Cloud Networking

    Get PDF
    The BEACON framework enables the provision of federated cloud infrastructures, with special emphasis on inter-cloud networking and security issues, to support the automated deployment of applications and services across different clouds and datacenters. BEACON is distributed as open source (see http://github.com/BeaconFramework) and some enhancements are being contributed to the OpenNebula and OpenStack cloud management platforms

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    Cross-Site Virtual Network in Cloud and Fog Computing

    Get PDF
    The interconnection of the different geographically dispersed cloud and fog infrastructures is a key issue for the development of the fog technology. Although most existing cloud providers and platforms offer some kind of connectivity services to allow the interconnection with external networks, these services exhibit many limitations and they are not suitable for fog computing environments. In this work we present a hybrid fog and cloud interconnection framework, which allows the automatic provision of cross-site virtual networks to interconnect geographically distributed cloud and fog infrastructures. This framework provides a scalable and multi-tenant solution, and a simple and generic interface for instantiating, configuring and deploying Layer 2 and Layer 3 overlay networks across heterogeneous fog and cloud platforms, with abstraction from the underlying cloud/fog technologies and network virtualization technologies

    Towards distributed architecture for collaborative cloud services in community networks

    Get PDF
    Internet and communication technologies have lowered the costs for communities to collaborate, leading to new services like user-generated content and social computing, and through collaboration, collectively built infrastructures like community networks have also emerged. Community networks get formed when individuals and local organisations from a geographic area team up to create and run a community-owned IP network to satisfy the community’s demand for ICT, such as facilitating Internet access and providing services of local interest. The consolidation of today’s cloud technologies offers now the possibility of collectively built community clouds, building upon user-generated content and user-provided networks towards an ecosystem of cloud services. To address the limitation and enhance utility of community networks, we propose a collaborative distributed architecture for building a community cloud system that employs resources contributed by the members of the community network for provisioning infrastructure and software services. Such architecture needs to be tailored to the specific social, economic and technical characteristics of the community networks for community clouds to be successful and sustainable. By real deployments of clouds in community networks and evaluation of application performance, we show that community clouds are feasible. Our result may encourage collaborative innovative cloud-based services made possible with the resources of a community.Peer ReviewedPostprint (author’s final draft
    • …
    corecore