648 research outputs found

    A Generic System for Automotive Software Over the Air (SOTA) Updates Allowing Efficient Variant and Release Management

    Get PDF
    The introduction of Software Over The Air (SOTA) Updates in the automotive industry offers both the Original Equipment Manufacturer and the driver many advantages such as cost savings through inexpensive over the air bug fixes. Furthermore, it enables enhancing the capabilities of future vehicles throughout their life-cycle. However, before making SOTA a reality for safety-critical automotive functions, major challenges must be deeply studied and resolved: namely the related security risks and the required high system safety. The security concerns are primarily related to the attack and manipulation threats of wireless connected and update-capable cars. The functional safety requirements must be fulfilled despite the agility needed by some software updates and the typically high variants numbers. We studied the state of the art and developed a generic SOTA updates system based on a Server-Client architecture and covering main security and safety aspects including a rollback capability. The proposed system offers release and variant management, which is the main novelty of this work. The proof of concept implementation with a server running on a host PC and an exemplary Electric/Electronic network showed the feasibility and the benefits of SOTA updates

    Lifecycle Management of Automotive Safety-Critical Over the Air Updates: A Systems Approach

    Get PDF
    With the increasing importance of Over The Air (OTA) updates in the automotive field, maintaining safety standards becomes more challenging as frequent incremental changes of embedded software are regularly integrated into a wide range of vehicle variants. This necessitates new processes and methodologies with a holistic view on the backend, where the updates are developed and released

    Secure In-Vehicle Storage

    Get PDF

    A Structured Approach to Securing the Connected Car

    Get PDF
    <p>Vehicles of today have become increasingly dependent on software to handle their functionalities. Updating and maintaining the software in vehicles has therefore become a costly process for the automotive industry. By introducing wireless communications to vehicles, vehicular maintenance can greatly be improved and many other new applications can also be brought to the vehicles. However, the vehicle was not designed with security in mind. Since the vehicle is safety-critical, it is vital that such new remote services do not violate the safety and security requirements of the vehicle. Thus, this thesis presents a general approach to securing the connected car and the usefulness of the approach is demonstrated in a vehicular diagnostics scenario.</p> <p>The thesis comes in two main parts. In the first part, we address security mechanisms for the connected car. First, a survey of current mechanisms to secure the in-vehicle networks is made. Then, a description of possible communication methods with vehicles is given and a taxonomy of current entities involved in such communication is presented. The taxonomy is organised in actors, vehicle-to-X communications, network paths, and dependability and security attributes. The usefulness of the taxonomy is demonstrated by two examples.</p> <p>In the second part, we address security with respect to vehicular diagnostics. First, an overall security analysis of the interaction between the connected car and the repair shop is conducted. We find that the most imminent risk in the repair shop is the loss of authentication keys. The loss of such keys allows masquerading attacks against vehicles. To address this problem, we propose a Kerberos-inspired protocol for authentication and authorisation of the diagnostics equipment and a trusted third party is introduced.</p> <p>To conclude, this thesis shows the value of adopting a structured approach to securing the connected car. The approach has been shown to be useful for identifying threats and countermeasures and thus help improving security.</p

    A formal framework for security testing of automotive over-the-air update systems

    Get PDF
    Modern vehicles are comparable to desktop computers due to the increase in connectivity. This fact also extends to potential cyber-attacks. A solution for preventing and mitigating cyber attacks is Over-The-Air (OTA) updates. This solution has also been used for both desktops and mobile phones. The current de facto OTA security system for vehicles is Uptane, which is developed to solve the unique issues vehicles face. The Uptane system needs to have a secure method of updating; otherwise, attackers will exploit it. To this end, we have developed a comprehensive and model-based security testing approach by translating Uptane and our attack model into formal models in Communicating Sequential Processes (CSP). These are combined and verified to generate an exhaustive list of test cases to see to which attacks Uptane may be susceptible. Security testing is then conducted based on these generated test cases, on a test-bed running an implementation of Uptane. The security testing result enables us to validate the security design of Uptane and some vulnerabilities to which it is subject

    OTA updates mechanisms: a taxonomy and techniques catalog

    Get PDF
    The use of the Internet of Things (IoT) and Cyber-Physical Systems (CPS) in industry and daily life has increased. The embedded software of IoT systems requires updates over time for long-term maintainability, bug xes, and improvements. Developers and manufacturers design and implement OTA update systems in ad-hoc manners because there are no speci c standards and little empirical information about mechanisms. This article describes a systematic literature review to identify proposed OTA update mechanisms, and a taxonomy to orga- nize them for system designers. Academic and professional (grey) litera- ture was gathered from four information sources; 109 studies were found, of which 29 remained after applying inclusion and exclusion criteria; and they were recognized as belonging to six mechanisms (categories). Each technique was associated to a mechanism, yielding an (initial) catalog of OTA update techniques. This taxonomy and catalog can be used to design IoT and CPS applications that must include OTA update functionality.Sociedad Argentina de Informática e Investigación Operativ

    Ein mehrschichtiges sicheres Framework für Fahrzeugsysteme

    Get PDF
    In recent years, significant developments were introduced within the vehicular domain, evolving the vehicles to become a network of many embedded systems distributed throughout the car, known as Electronic Control Units (ECUs). Each one of these ECUs runs a number of software components that collaborate with each other to perform various vehicle functions. Modern vehicles are also equipped with wireless communication technologies, such as WiFi, Bluetooth, and so on, giving them the capability to interact with other vehicles and roadside infrastructure. While these improvements have increased the safety of the automotive system, they have vastly expanded the attack surface of the vehicle and opened the door for new potential security risks. The situation is made worse by a lack of security mechanisms in the vehicular system which allows the escalation of a compromise in one of the non-critical sub-systems to threaten the safety of the entire vehicle and its passengers. This dissertation focuses on providing a comprehensive framework that ensures the security of the vehicular system during its whole life-cycle. This framework aims to prevent the cyber-attacks against different components by ensuring secure communications among them. Furthermore, it aims to detect attacks which were not prevented successfully, and finally, to respond to these attacks properly to ensure a high degree of safety and stability of the system.In den letzten Jahren wurden bedeutende Entwicklungen im Bereich der Fahrzeuge vorgestellt, die die Fahrzeuge zu einem Netzwerk mit vielen im gesamten Fahrzeug verteile integrierte Systeme weiterentwickelten, den sogenannten Steuergeräten (ECU, englisch = Electronic Control Units). Jedes dieser Steuergeräte betreibt eine Reihe von Softwarekomponenten, die bei der Ausführung verschiedener Fahrzeugfunktionen zusammenarbeiten. Moderne Fahrzeuge sind auch mit drahtlosen Kommunikationstechnologien wie WiFi, Bluetooth usw. ausgestattet, die ihnen die Möglichkeit geben, mit anderen Fahrzeugen und der straßenseitigen Infrastruktur zu interagieren. Während diese Verbesserungen die Sicherheit des Fahrzeugsystems erhöht haben, haben sie die Angriffsfläche des Fahrzeugs erheblich vergrößert und die Tür für neue potenzielle Sicherheitsrisiken geöffnet. Die Situation wird durch einen Mangel an Sicherheitsmechanismen im Fahrzeugsystem verschärft, die es ermöglichen, dass ein Kompromiss in einem der unkritischen Subsysteme die Sicherheit des gesamten Fahrzeugs und seiner Insassen gefährdet kann. Diese Dissertation konzentriert sich auf die Entwicklung eines umfassenden Rahmens, der die Sicherheit des Fahrzeugsystems während seines gesamten Lebenszyklus gewährleistet. Dieser Rahmen zielt darauf ab, die Cyber-Angriffe gegen verschiedene Komponenten zu verhindern, indem eine sichere Kommunikation zwischen ihnen gewährleistet wird. Darüber hinaus zielt es darauf ab, Angriffe zu erkennen, die nicht erfolgreich verhindert wurden, und schließlich auf diese Angriffe angemessen zu reagieren, um ein hohes Maß an Sicherheit und Stabilität des Systems zu gewährleisten
    corecore