1,574 research outputs found

    Proceedings of the Workshop on web applications and secure hardware (WASH 2013).

    Get PDF
    Web browsers are becoming the platform of choice for applications that need to work across a wide range of different devices, including mobile phones, tablets, PCs, TVs and in-car systems. However, for web applications which require a higher level of assurance, such as online banking, mobile payment, and media distribution (DRM), there are significant security and privacy challenges. A potential solution to some of these problems can be found in the use of secure hardware – such as TPMs, ARM TrustZone, virtualisation and secure elements – but these are rarely accessible to web applications or used by web browsers. The First Workshop on Web Applications and Secure Hardware (WASH'13) focused on how secure hardware could be used to enhance web applications and web browsers to provide functionality such as credential storage, attestation and secure execution. This included challenges in compatibility (supporting the same security features despite different user hardware) as well as multi-device scenarios where a device with hardware mechanisms can help provide assurance for systems without. Also of interest were proposals to enhance existing security mechanisms and protocols, security models where the browser is not trusted by the web application, and enhancements to the browser itself

    Leveraging the Cloud for Software Security Services.

    Full text link
    This thesis seeks to leverage the advances in cloud computing in order to address modern security threats, allowing for completely novel architectures that provide dramatic improvements and asymmetric gains beyond what is possible using current approaches. Indeed, many of the critical security problems facing the Internet and its users are inadequately addressed by current security technologies. Current security measures often are deployed in an exclusively network-based or host-based model, limiting their efficacy against modern threats. However, recent advancements in the past decade in cloud computing and high-speed networking have ushered in a new era of software services. Software services that were previously deployed on-premise in organizations and enterprises are now being outsourced to the cloud, leading to fundamentally new models in how software services are sold, consumed, and managed. This thesis focuses on how novel software security services can be deployed that leverage the cloud to scale elegantly in their capabilities, performance, and management. First, we introduce a novel architecture for malware detection in the cloud. Next, we propose a cloud service to protect modern mobile devices, an ever-increasing target for malicious attackers. Then, we discuss and demonstrate the ability for attackers to leverage the same benefits of cloud-centric services for malicious purposes. Next, we present new techniques for the large-scale analysis and classification of malicious software. Lastly, to demonstrate the benefits of cloud-centric architectures outside the realm of malicious software, we present a threshold signature scheme that leverages the cloud for robustness and resiliency.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91385/1/jonojono_1.pd

    Biometrics for internet‐of‐things security: A review

    Get PDF
    The large number of Internet‐of‐Things (IoT) devices that need interaction between smart devices and consumers makes security critical to an IoT environment. Biometrics offers an interesting window of opportunity to improve the usability and security of IoT and can play a significant role in securing a wide range of emerging IoT devices to address security challenges. The purpose of this review is to provide a comprehensive survey on the current biometrics research in IoT security, especially focusing on two important aspects, authentication and encryption. Regarding authentication, contemporary biometric‐based authentication systems for IoT are discussed and classified based on different biometric traits and the number of biometric traits employed in the system. As for encryption, biometric‐cryptographic systems, which integrate biometrics with cryptography and take advantage of both to provide enhanced security for IoT, are thoroughly reviewed and discussed. Moreover, challenges arising from applying biometrics to IoT and potential solutions are identified and analyzed. With an insight into the state‐of‐the‐art research in biometrics for IoT security, this review paper helps advance the study in the field and assists researchers in gaining a good understanding of forward‐looking issues and future research directions

    Tree-formed Verification Data for Trusted Platforms

    Full text link
    The establishment of trust relationships to a computing platform relies on validation processes. Validation allows an external entity to build trust in the expected behaviour of the platform based on provided evidence of the platform's configuration. In a process like remote attestation, the 'trusted' platform submits verification data created during a start up process. These data consist of hardware-protected values of platform configuration registers, containing nested measurement values, e.g., hash values, of loaded or started components. Commonly, the register values are created in linear order by a hardware-secured operation. Fine-grained diagnosis of components, based on the linear order of verification data and associated measurement logs, is not optimal. We propose a method to use tree-formed verification data to validate a platform. Component measurement values represent leaves, and protected registers represent roots of a hash tree. We describe the basic mechanism of validating a platform using tree-formed measurement logs and root registers and show an logarithmic speed-up for the search of faults. Secure creation of a tree is possible using a limited number of hardware-protected registers and a single protected operation. In this way, the security of tree-formed verification data is maintained.Comment: 15 pages, 11 figures, v3: Reference added, v4: Revised, accepted for publication in Computers and Securit

    The simplicity project: easing the burden of using complex and heterogeneous ICT devices and services

    Get PDF
    As of today, to exploit the variety of different "services", users need to configure each of their devices by using different procedures and need to explicitly select among heterogeneous access technologies and protocols. In addition to that, users are authenticated and charged by different means. The lack of implicit human computer interaction, context-awareness and standardisation places an enormous burden of complexity on the shoulders of the final users. The IST-Simplicity project aims at leveraging such problems by: i) automatically creating and customizing a user communication space; ii) adapting services to user terminal characteristics and to users preferences; iii) orchestrating network capabilities. The aim of this paper is to present the technical framework of the IST-Simplicity project. This paper is a thorough analysis and qualitative evaluation of the different technologies, standards and works presented in the literature related to the Simplicity system to be developed

    Facilitating Forensics in the Mobile Millennium through Proactive Enterprise Security

    Get PDF
    This work explores the impact of the emerging mobile communication device paradigm on the security-conscious enterprise, with regard to providing insights for proactive Information Assurance and facilitation of eventual Forensic analysis. Attention is given to technology evolution in the areas of best practices, attack vectors, software and hardware performance, access and activity monitoring, and architectural models. Keywords: Forensics, enterprise security, mobile communication, best practices, attack vectors

    End-to-end security for mobile devices

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2004Includes bibliographical references (leaves: 120)Text in English; Abstract: Turkish and Englishix, 133 leavesEnd-to-end security has been an emerging need for mobile devices with the widespread use of personal digital assistants and mobile phones. Transport Layer Security Protocol (TLS) is an end-to-end security protocol that is commonly used in Internet, together with its predecessor, SSL protocol. By using TLS protocol in mobile world, the advantage of the proven security model of this protocol can be taken.J2ME (Java 2 Micro Edition) has been the de facto application platform used in mobile devices. This thesis aims to provide an end-to-end security protocol implementation based on TLS 1.0 specification and that can run on J2ME MIDP (Mobile Information Device Profile) environment. Because of the resource intensive public-key operations used in TLS, this protocol needs high resources and has low performance. Another motivation for the thesis is to adapt the protocol for mobile environment and to show that it is possible to use the protocol implementation in both client and server modes. An alternative serialization mechanism is used instead of the standard Java object serialization that is lacking in MIDP. In this architecture, XML is used to transmit object data.The mobile end-to-end security protocol has the main design issues of maintainability and extensibility. Cryptographic operations are performed with a free library, Bouncy Castle Cryptography Package. The object-oriented architecture of the protocol implementation makes the replacement of this library with another cryptography package easier.Mobile end-to-end security protocol is tested with a mobile hospital reservation system application. Test cases are prepared to measure the performance of the protocol implementation with different cipher suites and platforms. Measured values of all handshake operation and defined time spans are given in tables and compared with graphs

    Stream ciphers for secure display

    Get PDF
    In any situation where private, proprietary or highly confidential material is being dealt with, the need to consider aspects of data security has grown ever more important. It is usual to secure such data from its source, over networks and on to the intended recipient. However, data security considerations typically stop at the recipient's processor, leaving connections to a display transmitting raw data which is increasingly in a digital format and of value to an adversary. With a progression to wireless display technologies the prominence of this vulnerability is set to rise, making the implementation of 'secure display' increasingly desirable. Secure display takes aspects of data security right to the display panel itself, potentially minimising the cost, component count and thickness of the final product. Recent developments in display technologies should help make this integration possible. However, the processing of large quantities of time-sensitive data presents a significant challenge in such resource constrained environments. Efficient high- throughput decryption is a crucial aspect of the implementation of secure display and one for which the widely used and well understood block cipher may not be best suited. Stream ciphers present a promising alternative and a number of strong candidate algorithms potentially offer the hardware speed and efficiency required. In the past, similar stream ciphers have suffered from algorithmic vulnerabilities. Although these new-generation designs have done much to respond to this concern, the relatively short 80-bit key lengths of some proposed hardware candidates, when combined with ever-advancing computational power, leads to the thesis identifying exhaustive search of key space as a potential attack vector. To determine the value of protection afforded by such short key lengths a unique hardware key search engine for stream ciphers is developed that makes use of an appropriate data element to improve search efficiency. The simulations from this system indicate that the proposed key lengths may be insufficient for applications where data is of long-term or high value. It is suggested that for the concept of secure display to be accepted, a longer key length should be used

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    Platform Embedded Security Technology Revealed

    Get PDF
    Computer scienc
    • 

    corecore