67,750 research outputs found

    Brief Analysis of Methods for Cloud Computing Key Management

    Get PDF
    In this paper basic of cloud and possible methods for its key management is discussed. Now a days cloud computing is good arena in the field of research.  In cloud computing cloud customer and cloud provider needs to secure data against loss and theft. Encryption with key management is a technique for securing the personal and enterprise data. It is mainly used to protect data. In this paper how key management can be performed to protect cloud data is discussed. So that risks of data loss and theft can be reduced. Keywords: Cloud computing, Cloud architecture, Encryption, Key managemen

    A JSON Token-Based Authentication and Access Management Schema for Cloud SaaS Applications

    Full text link
    Cloud computing is significantly reshaping the computing industry built around core concepts such as virtualization, processing power, connectivity and elasticity to store and share IT resources via a broad network. It has emerged as the key technology that unleashes the potency of Big Data, Internet of Things, Mobile and Web Applications, and other related technologies, but it also comes with its challenges - such as governance, security, and privacy. This paper is focused on the security and privacy challenges of cloud computing with specific reference to user authentication and access management for cloud SaaS applications. The suggested model uses a framework that harnesses the stateless and secure nature of JWT for client authentication and session management. Furthermore, authorized access to protected cloud SaaS resources have been efficiently managed. Accordingly, a Policy Match Gate (PMG) component and a Policy Activity Monitor (PAM) component have been introduced. In addition, other subcomponents such as a Policy Validation Unit (PVU) and a Policy Proxy DB (PPDB) have also been established for optimized service delivery. A theoretical analysis of the proposed model portrays a system that is secure, lightweight and highly scalable for improved cloud resource security and management.Comment: 6 Page

    Federated Secure Data Sharing by Edge-Cloud Computing Model*

    Get PDF
    Data sharing by cloud computing enjoys benefits in management, access control, and scalability. However, it suffers from certain drawbacks, such as high latency of downloading data, non-unified data access control management, and no user data privacy. Edge computing provides the feasibility to overcome the drawbacks mentioned above. Therefore, providing a security framework for edge computing becomes a prime focus for researchers. This work introduces a new key-aggregate cryptosystem for edge-cloud-based data sharing integrating cloud storage services. The proposed protocol secures data and provides anonymous authentication across multiple cloud platforms, key management flexibility for user data privacy, and revocability. Performance assessment in feasibility and usability paves satisfactory results. Therefore, this work directs a new horizon to detailed new edge-computing-based data sharing services based on the proposed protocol for low latency, secure unified access control, and user data privacy in the modern edge enabled reality

    State of The Art and Hot Aspects in Cloud Data Storage Security

    Get PDF
    Along with the evolution of cloud computing and cloud storage towards matu- rity, researchers have analyzed an increasing range of cloud computing security aspects, data security being an important topic in this area. In this paper, we examine the state of the art in cloud storage security through an overview of selected peer reviewed publications. We address the question of defining cloud storage security and its different aspects, as well as enumerate the main vec- tors of attack on cloud storage. The reviewed papers present techniques for key management and controlled disclosure of encrypted data in cloud storage, while novel ideas regarding secure operations on encrypted data and methods for pro- tection of data in fully virtualized environments provide a glimpse of the toolbox available for securing cloud storage. Finally, new challenges such as emergent government regulation call for solutions to problems that did not receive enough attention in earlier stages of cloud computing, such as for example geographical location of data. The methods presented in the papers selected for this review represent only a small fraction of the wide research effort within cloud storage security. Nevertheless, they serve as an indication of the diversity of problems that are being addressed

    Portable TPM based user Attestation Architecture for Cloud Environments

    Get PDF
    Cloud computing is causing a major shift in the IT industry. Research indicates that the cloud computing industry segment is substantial and growing enormously. New technologies have been developed, and now there are various ways to virtualize IT systems and to access the needed applications on the Internet, through web based applications. Users, now can access their data any time and at any place with the service provided by the cloud storage. With all these benefits, security is always a concern. Even though the cloud provides accessing the data stored in cloud storage in a flexible and scalable manner, the main challenge it faces is with the security issues. Thus user may think it2019;s not secure since the encryption keys are managed by the software, therefore there is no attestation on the client software integrity. The cloud user who has to deploy in the reliable and secure environment should be confirmed from the Infrastructure as a Service (IaaS) that it has not been corrupted by the mischievous acts. Thus, the user identification which consists user ID and password can also be easily compromised. Apart from the traditional network security solutions, trusted computing technology is combined into more and more aspects of cloud computing environment to guarantee the integrity of platform and provide attestation mechanism for trustworthy services. Thus, enhancing the confidence of the IaaS provider. A cryptographic protocol adopted by the Trusted Computing Group enables the remote authentication which preserves the privacy of the user based on the trusted platform. Thus we propose a framework which defines Trusted Platform Module (TPM), a trusted computing group which proves the secure data access control in the cloud storage by providing additional security. In this paper, we define the TPMbased key management, remote client attestation and a secure key share protocol across multiple users. Then we consider some of the challenges with the current TPM based att

    A secure privacy preserving deduplication scheme for cloud computing

    Full text link
    © 2019 Elsevier B.V. Data deduplication is a key technique to improve storage efficiency in cloud computing. By pointing redundant files to a single copy, cloud service providers greatly reduce their storage space as well as data transfer costs. Despite of the fact that the traditional deduplication approach has been adopted widely, it comes with a high risk of losing data confidentiality because of the data storage models in cloud computing. To deal with this issue in cloud storage, we first propose a TEE (trusted execution environment) based secure deduplication scheme. In our scheme, each cloud user is assigned a privilege set; the deduplication can be performed if and only if the cloud users have the correct privilege. Moreover, our scheme augments the convergent encryption with users’ privileges and relies on TEE to provide secure key management, which improves the ability of such cryptosystem to resist chosen plaintext attacks and chosen ciphertext attacks. A security analysis indicates that our scheme is secure enough to support data deduplication and to protect the confidentiality of sensitive data. Furthermore, we implement a prototype of our scheme and evaluate the performance of our prototype, experiments show that the overhead of our scheme is practical in realistic environments

    Secure Cloud Storage: A Framework for Data Protection as a Service in the Multi-cloud Environment

    Get PDF
    This paper introduces Secure Cloud Storage (SCS), a framework for Data Protection as a Service (DPaaS) to cloud computing users. Compared to the existing Data Encryption as a Service (DEaaS) such as those provided by Amazon and Google, DPaaS provides more flexibility to protect data in the cloud. In addition to supporting the basic data encryption capability as DEaaS does, DPaaS allows users to define fine-grained access control policies to protect their data. Once data is put under an access control policy, it is automatically encrypted and only if the policy is satisfied, the data could be decrypted and accessed by either the data owner or anyone else specified in the policy. The key idea of the SCS framework is to separate data management from security management in addition to defining a full cycle of data security automation from encryption to decryption. As a proof-of-concept for the design, we implemented a prototype of the SCS framework that works with both BT Cloud Compute platform and Amazon EC2. Experiments on the prototype have proved the efficiency of the SCS framework

    Somewhat Homomorphic Encryption Technique with its Key Management Protocol

    Get PDF
    Cloud computing has been contemplated as the architecture of various Business organizations, providing easy access to vast data storage and applications services. Most of the cloud service providers encrypt the data only on the network , while some even store the data in encrypted format. This means anyone with access to the cloud servers (cloud service providers) can appropriate it. Even if the data is encrypted during storage, keys are often stored along with your data .Thus an end-to-end encryption scheme has been proposed as a promising solution to data storage on cloud ,in order to perform computations on the encrypted data and thereby store the key securely. Somewhat Homomorphic Encryption is a fully homomorphic encryption technique which is compact, semantically secure with significantly smaller public key and is capable of encrypting integer plaintexts rather than single bits, with comparatively lower expansion and computational complexities Keywords-Cloud computing, Cryptography, Homomorphic Key Management (HKM), Homomorphic encryption, Somewhat Homomorphic encryption(SHE)
    • …
    corecore