662 research outputs found

    Secure k-Nearest Neighbor Query over Encrypted Data in Outsourced Environments

    Full text link
    For the past decade, query processing on relational data has been studied extensively, and many theoretical and practical solutions to query processing have been proposed under various scenarios. With the recent popularity of cloud computing, users now have the opportunity to outsource their data as well as the data management tasks to the cloud. However, due to the rise of various privacy issues, sensitive data (e.g., medical records) need to be encrypted before outsourcing to the cloud. In addition, query processing tasks should be handled by the cloud; otherwise, there would be no point to outsource the data at the first place. To process queries over encrypted data without the cloud ever decrypting the data is a very challenging task. In this paper, we focus on solving the k-nearest neighbor (kNN) query problem over encrypted database outsourced to a cloud: a user issues an encrypted query record to the cloud, and the cloud returns the k closest records to the user. We first present a basic scheme and demonstrate that such a naive solution is not secure. To provide better security, we propose a secure kNN protocol that protects the confidentiality of the data, user's input query, and data access patterns. Also, we empirically analyze the efficiency of our protocols through various experiments. These results indicate that our secure protocol is very efficient on the user end, and this lightweight scheme allows a user to use any mobile device to perform the kNN query.Comment: 23 pages, 8 figures, and 4 table

    Secure kk-ish Nearest Neighbors Classifier

    Get PDF
    In machine learning, classifiers are used to predict a class of a given query based on an existing (classified) database. Given a database S of n d-dimensional points and a d-dimensional query q, the k-nearest neighbors (kNN) classifier assigns q with the majority class of its k nearest neighbors in S. In the secure version of kNN, S and q are owned by two different parties that do not want to share their data. Unfortunately, all known solutions for secure kNN either require a large communication complexity between the parties, or are very inefficient to run. In this work we present a classifier based on kNN, that can be implemented efficiently with homomorphic encryption (HE). The efficiency of our classifier comes from a relaxation we make on kNN, where we allow it to consider kappa nearest neighbors for kappa ~ k with some probability. We therefore call our classifier k-ish Nearest Neighbors (k-ish NN). The success probability of our solution depends on the distribution of the distances from q to S and increase as its statistical distance to Gaussian decrease. To implement our classifier we introduce the concept of double-blinded coin-toss. In a doubly-blinded coin-toss the success probability as well as the output of the toss are encrypted. We use this coin-toss to efficiently approximate the average and variance of the distances from q to S. We believe these two techniques may be of independent interest. When implemented with HE, the k-ish NN has a circuit depth that is independent of n, therefore making it scalable. We also implemented our classifier in an open source library based on HELib and tested it on a breast tumor database. The accuracy of our classifier (F_1 score) were 98\% and classification took less than 3 hours compared to (estimated) weeks in current HE implementations

    k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data

    Full text link
    Data Mining has wide applications in many areas such as banking, medicine, scientific research and among government agencies. Classification is one of the commonly used tasks in data mining applications. For the past decade, due to the rise of various privacy issues, many theoretical and practical solutions to the classification problem have been proposed under different security models. However, with the recent popularity of cloud computing, users now have the opportunity to outsource their data, in encrypted form, as well as the data mining tasks to the cloud. Since the data on the cloud is in encrypted form, existing privacy preserving classification techniques are not applicable. In this paper, we focus on solving the classification problem over encrypted data. In particular, we propose a secure k-NN classifier over encrypted data in the cloud. The proposed k-NN protocol protects the confidentiality of the data, user's input query, and data access patterns. To the best of our knowledge, our work is the first to develop a secure k-NN classifier over encrypted data under the semi-honest model. Also, we empirically analyze the efficiency of our solution through various experiments.Comment: 29 pages, 2 figures, 3 tables arXiv admin note: substantial text overlap with arXiv:1307.482
    corecore