3,540 research outputs found

    IoT-based Secure Data Transmission Prediction using Deep Learning Model in Cloud Computing

    Get PDF
    The security of Internet of Things (IoT) networks has become highly significant due to the growing number of IoT devices and the rise in data transfer across cloud networks. Here, we propose Generative Adversarial Networks (GANs) method for predicting secure data transmission in IoT-based systems using cloud computing. We evaluated our model’s attainment on the UNSW-NB15 dataset and contrasted it with other machine-learning (ML) methods, comprising decision trees (DT), random forests, and support vector machines (SVM). The outcomes demonstrate that our suggested GANs model performed better than expected in terms of precision, recall, F1 score, and area under the receiver operating characteristic curve (AUC-ROC). The GANs model generates a 98.07% accuracy rate for the testing dataset with a precision score of 98.45%, a recall score of 98.19%, an F1 score of 98.32%, and an AUC-ROC value of 0.998. These outcomes show how well our suggested GANs model predicts secure data transmission in cloud-based IoT-based systems, which is a crucial step in guaranteeing the confidentiality of IoT networks

    TrustE-VC: Trustworthy Evaluation Framework for Industrial Connected Vehicles in the Cloud

    Get PDF
    The integration between cloud computing and vehicular ad hoc networks, namely, vehicular clouds (VCs), has become a significant research area. This integration was proposed to accelerate the adoption of intelligent transportation systems. The trustworthiness in VCs is expected to carry more computing capabilities that manage large-scale collected data. This trend requires a security evaluation framework that ensures data privacy protection, integrity of information, and availability of resources. To the best of our knowledge, this is the first study that proposes a robust trustworthiness evaluation of vehicular cloud for security criteria evaluation and selection. This article proposes three-level security features in order to develop effectiveness and trustworthiness in VCs. To assess and evaluate these security features, our evaluation framework consists of three main interconnected components: 1) an aggregation of the security evaluation values of the security criteria for each level; 2) a fuzzy multicriteria decision-making algorithm; and 3) a simple additive weight associated with the importance-performance analysis and performance rate to visualize the framework findings. The evaluation results of the security criteria based on the average performance rate and global weight suggest that data residency, data privacy, and data ownership are the most pressing challenges in assessing data protection in a VC environment. Overall, this article paves the way for a secure VC using an evaluation of effective security features and underscores directions and challenges facing the VC community. This article sheds light on the importance of security by design, emphasizing multiple layers of security when implementing industrial VCsThis work was supported in part by the Ministry of Education, Culture, and Sport, Government of Spain under Grant TIN2016-76373-P, in part by the Xunta de Galicia Accreditation 2016–2019 under Grant ED431G/08 and Grant ED431C 2018/2019, and in part by the European Union under the European Regional Development FundS

    Double Secret Protection: Bridging Federal and State Law To Protect Privacy Rights for Telemental and Mobile Health Users

    Get PDF
    Mental health care in the United States is plagued by stigma, cost, and access issues that prevent many people from seeking and continuing treatment for mental health conditions. Emergent technology, however, may offer a solution. Through telemental health, patients can connect with providers remotely—avoiding stigmatizing situations that can arise from traditional healthcare delivery, receiving more affordable care, and reaching providers across geographic boundaries. And with mobile health technology, people can use smart phone applications both to self-monitor their mental health and to communicate with their doctors. But people do not want to take advantage of telemental and mobile health unless their privacy is protected. After evaluating the applicability of current health information privacy law to these new forms of treatment, this Note proposes changes to the federal regime to protect privacy rights for telemental and mobile health users

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue
    • …
    corecore