57,746 research outputs found

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange

    Leveraging Secure Multiparty Computation in the Internet of Things

    Full text link
    Centralized systems in the Internet of Things---be it local middleware or cloud-based services---fail to fundamentally address privacy of the collected data. We propose an architecture featuring secure multiparty computation at its core in order to realize data processing systems which already incorporate support for privacy protection in the architecture

    An Effective Private Data storage and Retrieval System using Secret sharing scheme based on Secure Multi-party Computation

    Full text link
    Privacy of the outsourced data is one of the major challenge.Insecurity of the network environment and untrustworthiness of the service providers are obstacles of making the database as a service.Collection and storage of personally identifiable information is a major privacy concern.On-line public databases and resources pose a significant risk to user privacy, since a malicious database owner may monitor user queries and infer useful information about the customer.The challenge in data privacy is to share data with third-party and at the same time securing the valuable information from unauthorized access and use by third party.A Private Information Retrieval(PIR) scheme allows a user to query database while hiding the identity of the data retrieved.The naive solution for confidentiality is to encrypt data before outsourcing.Query execution,key management and statistical inference are major challenges in this case.The proposed system suggests a mechanism for secure storage and retrieval of private data using the secret sharing technique.The idea is to develop a mechanism to store private information with a highly available storage provider which could be accessed from anywhere using queries while hiding the actual data values from the storage provider.The private information retrieval system is implemented using Secure Multi-party Computation(SMC) technique which is based on secret sharing. Multi-party Computation enable parties to compute some joint function over their private inputs.The query results are obtained by performing a secure computation on the shares owned by the different servers.Comment: Data Science & Engineering (ICDSE), 2014 International Conference, CUSA
    • …
    corecore