5,234 research outputs found

    Industry 4.0: The Future of Indo-German Industrial Collaboration

    Get PDF
    Industry 4.0 can be described as the fourth industrial revolution, a mega- trend that affects every company around the world. It envisions interconnections and collaboration between people, products and machines within and across enterprises. Why does Industry 4.0 make for an excellent platform for industrial collaboration between India and Germany? The answers lie in economic as well as social factors. Both countries have strengths and weakness and strategic collaboration using the principles of Industry 4.0 can help both increase their industrial output, GDP and make optimal use of human resources. As a global heavy weight in manufacturing and machine export, Germany has a leading position in the development and deployment of Industry 4.0 concepts and technology. However, its IT sector, formed by a labor force of 800,000 employees, is not enough. It needs more professionals to reach its full potential. India, on the other hand, is a global leader in IT and business process outsourcing. But its manufacturing industry needs to grow significantly and compete globally. These realities clearly show the need for Industry 4.0-based collaboration between Germany and India. So how does Industry 4.0 work? In a first step, we look at the technical pers- pective – the vertical and horizontal integration of Industry 4.0 principles in enterprises. Vertical integration refers to operations within Smart Factories and horizontal integration to Smart Supply Chains across businesses. In the second step, we look at manufacturing, chemical industry and the IT sector as potential targets for collaboration between the two countries. We use case studies to illustrate the benefits of the deployment of Industry 4.0. Potential collaboration patterns are discussed along different forms of value chains and along companies’ ability to achieve Industry 4.0 status. We analyse the social impact of Industry 4.0 on India and Germany and find that it works very well in the coming years. Germany with its dwindling labor force might be compensated through the automation. This will ensure continued high productivity levels and rise in GDP. India, on the other hand has a burgeoning labor market, with 10 million workers annually entering the job market. Given that the manufacturing sector will be at par with Europe in efficiency and costs by 2023, pressure on India’s labor force will increase even more. Even its robust IT sector will suffer fewer hires because of increased automation. Rapid development of technologies – for the Internet of Things (IoT) or for connectivity like Low-Power WAN – makes skilling and reskilling of the labor force critical for augmenting smart manufacturing. India and Germany have been collaborating at three levels relevant to Industry 4.0 – industry, government and academics. How can these be taken forward? The two countries have a long history of trade. The Indo-German Chamber of Commerce (IGCC) is the largest such chamber in India and the largest German chamber worldwide. VDMA (Verband Deutscher Maschinen- und Anlagenbau, Mechanical Engineering Industry Association), the largest industry association in Europe, maintains offices in India. Indian key players in IT, in turn, have subsidia- ries in Germany and cooperate with German companies in the area of Industry 4.0. Collaboration is also supported on governmental level. As government initiatives go, India has launched the “Make in India” initiative and the “Make in India Mittelstand! (MIIM)” programme as a part of it. The Indian Government is also supporting “smart manufacturing” initiatives in a major way. Centers of Excellence driven by the industry and academic bodies are being set up. Germany and India have a long tradition of research collaboration as well. Germany is the second scientific collaborator of India and Indian students form the third largest group of foreign students in Germany. German institutions like the German Academic Exchange Service (DAAD) or the German House for Research and Innovation (DWIH) are working to strengthen ties between the scientific communities of the two countries, and between their academia and industry. What prevents Industry 4.0 from becoming a more widely used technology? Recent surveys in Germany and India show that awareness about Industry 4.0 is still low, especially among small and medium manufacturing enterprises. IT companies, on the other hand, are better prepared. There is a broad demand for support, regarding customtailored solutions, information on case studies and the willingness to participate in Industry 4.0 pilot projects and to engage in its platform and networking activities. We also found similar responses at workshops conducted with Industry 4.0 stakehold- ers in June 2017 in Bangalore and Pune and in an online survey. What can be done to change this? Both countries should strengthen their efforts to create awareness for Industry 4.0, especially among small and medium enterprises. Germany should also put more emphasis on making their Industry 4.0 technology known to the Indian market. India’s IT giants, on the other hand, should make their Industry 4.0 offers more visible to the German market. The governments should support the establishing of joint Industry 4.0 collaboration platforms, centers of excellence and incubators to ease the dissemination of knowledge and technology. On academic level, joint research programs and exchange programs should be set up to foster the skilling of labor force in the deployment of Industry 4.0 methods and technologies

    Effect of Industry 4.0 on Education Systems: An Outlook

    Get PDF
    Congreso Universitario de Innovación Educativa En las Enseñanzas Técnicas, CUIEET (26º. 2018. Gijón

    Securing future decentralised industrial IoT infrastructures: challenges and free open source solutions

    Get PDF
    peer-reviewedThe next industrial revolution is said to be paved by the use of novel Internet of Things (IoT) technology. One important aspect of the modern IoT infrastructures is decentralised communication, often called Peer-to-Peer (P2P). In the context of industrial communication, P2P contributes to resilience and improved stability for industrial components. Current industrial facilities, however, still rely on centralised networking schemes which are considered to be mandatory to comply with security standards. In order to succeed, introduced industrial P2P technology must maintain the current level of protection and also consider possible new threats. The presented work starts with a short analysis of well-established industrial communication infrastructures and how these could benefit from decentralised structures. Subsequently, previously undefined Information Technology (IT) security requirements are derived from the new cloud based decentralised industrial automation model architecture presented in this paper. To meet those requirements, state-of-the-art communication schemes and their open source implementations are presented and assessed for their usability in the context of industrial IoT. Finally, derived building blocks for industrial IoT P2P security are presented which are qualified to comply with the stated industrial IoT security requirements

    Towards the digitization using asset administration shells

    Get PDF
    Industry 4.0 (I4.0) is promoting the digitization of traditional manufacturing systems towards flexible, reconfigurable and intelligent factories based on Cyber-Physical Systems (CPS). In this context, the Reference Architecture Model Industrie 4.0 (RAMI4.0) provides guidelines to develop I4.0 compliant solutions based on industrial standards. As the main RAMI4.0 specification, the Asset Administration Shell (AAS) is a standard digital representation of an industrial asset that plays a pivotal role in enabling interoperable communication among I4.0 components across the value chain. This paper provides an analysis of the current state-of-the-art of implementing AAS, discussing, amongst others, the key enabling technologies used to implement the AAS and the alignment of the research works found in the literature with the I4.0 components criteria.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020. The author Lucas Sakurada thanks the FCT - Fundação para a Ciência e Tecnologia, Portugal, for the PhD Grant DFA/BD/9234/2020.info:eu-repo/semantics/publishedVersio
    corecore