138,893 research outputs found

    Building secure embedded kernels with the Think architecture.

    Get PDF
    We present in this paper the security features of Think, an object-oriented architecture dedicated to build customized operating system kernels. The Think architecture is composed of an object-oriented software framework including a trader, and a library of system abstractions programmed as components. We show how to use this architecture to build secure and eïŹƒcient kernels for embedded systems. Policy- neutral security is achieved by providing elementary tools that can be used by the system programmer to build a system resistant to denial of service attacks and incorporating data access control. An example of such a secure system is given by detailing how to ensure component isolation with a elementary software-based memory isolation tool

    Automated Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces

    Full text link
    Embedded devices are becoming more widespread, interconnected, and web-enabled than ever. However, recent studies showed that these devices are far from being secure. Moreover, many embedded systems rely on web interfaces for user interaction or administration. Unfortunately, web security is known to be difficult, and therefore the web interfaces of embedded systems represent a considerable attack surface. In this paper, we present the first fully automated framework that applies dynamic firmware analysis techniques to achieve, in a scalable manner, automated vulnerability discovery within embedded firmware images. We apply our framework to study the security of embedded web interfaces running in Commercial Off-The-Shelf (COTS) embedded devices, such as routers, DSL/cable modems, VoIP phones, IP/CCTV cameras. We introduce a methodology and implement a scalable framework for discovery of vulnerabilities in embedded web interfaces regardless of the vendor, device, or architecture. To achieve this goal, our framework performs full system emulation to achieve the execution of firmware images in a software-only environment, i.e., without involving any physical embedded devices. Then, we analyze the web interfaces within the firmware using both static and dynamic tools. We also present some interesting case-studies, and discuss the main challenges associated with the dynamic analysis of firmware images and their web interfaces and network services. The observations we make in this paper shed light on an important aspect of embedded devices which was not previously studied at a large scale. We validate our framework by testing it on 1925 firmware images from 54 different vendors. We discover important vulnerabilities in 185 firmware images, affecting nearly a quarter of vendors in our dataset. These experimental results demonstrate the effectiveness of our approach

    Secure Virtualization of Latency-Constrained Systems

    Get PDF
    Virtualization is a mature technology in server and desktop environments where multiple systems are consolidate onto a single physical hardware platform, increasing the utilization of todays multi-core systems as well as saving resources such as energy, space and costs compared to multiple single systems. Looking at embedded environments reveals that many systems use multiple separate computing systems inside, including requirements for real-time and isolation properties. For example, modern high-comfort cars use up to a hundred embedded computing systems. Consolidating such diverse configurations promises to save resources such as energy and weight. In my work I propose a secure software architecture that allows consolidating multiple embedded software systems with timing constraints. The base of the architecture builds a microkernel-based operating system that supports a variety of different virtualization approaches through a generic interface, supporting hardware-assisted virtualization and paravirtualization as well as multiple architectures. Studying guest systems with latency constraints with regards to virtualization showed that standard techniques such as high-frequency time-slicing are not a viable approach. Generally, guest systems are a combination of best-effort and real-time work and thus form a mixed-criticality system. Further analysis showed that such systems need to export relevant internal scheduling information to the hypervisor to support multiple guests with latency constraints. I propose a mechanism to export those relevant events that is secure, flexible, has good performance and is easy to use. The thesis concludes with an evaluation covering the virtualization approach on the ARM and x86 architectures and two guest operating systems, Linux and FreeRTOS, as well as evaluating the export mechanism

    CacheLight: A Lightweight Approach for Preventing Malicious Use of Cache Locking Mechanisms

    Get PDF
    abstract: With the rise of the Internet of Things, embedded systems have become an integral part of life and can be found almost anywhere. Their prevalence and increased interconnectivity has made them a prime target for malicious attacks. Today, the vast majority of embedded devices are powered by ARM processors. To protect their processors from attacks, ARM introduced a hardware security extension known as TrustZone. It provides an isolated execution environment within the embedded device in which to deploy various memory integrity and malware detection tools. Even though Secure World can monitor the Normal World, attackers can attempt to bypass the security measures to retain control of a compromised system. CacheKit is a new type of rootkit that exploits such a vulnerability in the ARM architecture to hide in Normal World cache from memory introspection tools running in Secure World by exploiting cache locking mechanisms. If left unchecked, ARM processors that provide hardware assisted cache locking for performance and time-critical applications in real-time and embedded systems would be completely vulnerable to this undetectable and untraceable attack. Therefore, a new approach is needed to ensure the correct use of such mechanisms and prevent malicious code from being hidden in the cache. CacheLight is a lightweight approach that leverages the TrustZone and Virtualization extensions of the ARM architecture to allow the system to continue to securely provide these hardware facilities to users while preventing attackers from exploiting them. CacheLight restricts the ability to lock the cache to the Secure World of the processor such that the Normal World can still request certain memory to be locked into the cache by the secure operating system (OS) through a Secure Monitor Call (SMC). This grants the secure OS the power to verify and validate the information that will be locked in the requested cache way thereby ensuring that any data that remains in the cache will not be inconsistent with what exists in main memory for inspection. Malicious attempts to hide data can be prevented and recovered for analysis while legitimate requests can still generate valid entries in the cache.Dissertation/ThesisMasters Thesis Computer Science 201

    Identifying Native Applications with High Assurance

    Get PDF
    The work described in this paper investigates the problem of identifying and deterring stealthy malicious processes on a host. We point out the lack of strong application iden- tication in main stream operating systems. We solve the application identication problem by proposing a novel iden- tication model in which user-level applications are required to present identication proofs at run time to be authenti- cated by the kernel using an embedded secret key. The se- cret key of an application is registered with a trusted kernel using a key registrar and is used to uniquely authenticate and authorize the application. We present a protocol for secure authentication of applications. Additionally, we de- velop a system call monitoring architecture that uses our model to verify the identity of applications when making critical system calls. Our system call monitoring can be integrated with existing policy specication frameworks to enforce application-level access rights. We implement and evaluate a prototype of our monitoring architecture in Linux as device drivers with nearly no modication of the ker- nel. The results from our extensive performance evaluation shows that our prototype incurs low overhead, indicating the feasibility of our model

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    Towards the Model-Driven Engineering of Secure yet Safe Embedded Systems

    Full text link
    We introduce SysML-Sec, a SysML-based Model-Driven Engineering environment aimed at fostering the collaboration between system designers and security experts at all methodological stages of the development of an embedded system. A central issue in the design of an embedded system is the definition of the hardware/software partitioning of the architecture of the system, which should take place as early as possible. SysML-Sec aims to extend the relevance of this analysis through the integration of security requirements and threats. In particular, we propose an agile methodology whose aim is to assess early on the impact of the security requirements and of the security mechanisms designed to satisfy them over the safety of the system. Security concerns are captured in a component-centric manner through existing SysML diagrams with only minimal extensions. After the requirements captured are derived into security and cryptographic mechanisms, security properties can be formally verified over this design. To perform the latter, model transformation techniques are implemented in the SysML-Sec toolchain in order to derive a ProVerif specification from the SysML models. An automotive firmware flashing procedure serves as a guiding example throughout our presentation.Comment: In Proceedings GraMSec 2014, arXiv:1404.163
    • 

    corecore