2,158 research outputs found

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Decentralizing Software Identity Management

    Get PDF
    Software ist in unterschiedlichsten Bereichen von größter Wichtigkeit: Wirtschaft, Handel, Industrielle Steueranlagen, Transport, Logistik, Kommunikation, sowie im privaten Gebrauch um nur einige Beispiele zu nennen. Es ist entsprechend unverzichtbar, Software mit Integrität und einer expliziten Befürwortung durch den jeweiligen Entwickler oder Herausgeber zu beziehen. In dieser Arbeit verfolgen wir das Ziel, die Interaktion zwischen Erstellern und Nutzern von Software durch die Etablierung und Nutzung von expliziten Identitäten für Software weiter abzusichern. Eine Softwareidentität etabliert in erster Linie einen eindeutigen und persistenten Bezugspunkt an den Softwareersteller Informationen zu Binärdateien ihrer Software anhängen und entfernen können. Die Möglichkeit zuvor veröffentlichte Binärdateien aus einer Softwareidentität zu entfernen erlaubt Entwicklern auf sicherheitskritische Fehler oder Kompromittierungen zu reagieren, indem sie klar kommunizieren, dass bestimmte Binärdateien nicht länger verwendet werden sollten. Nutzer einer Software können über solche Widerrufe oder neue Versionen informiert werden, indem sie die entsprechende Softwareidentität beobachten über die sie dann auch die Integrität und Befürwortung von heruntergeladenen Binärdateien überprüfen können. Distributed Ledger Technologien wie Ethereum oder zuvor Bitcoin scheinen taugliche Plattformen für die Umsetzung von Softwareidentitäten zu sein, ohne dabei auf zentrale Anbieter vertrauen zu müssen. Ein offenes Peer-to-Peer Netzwerk etabliert einen Konsens über einen manipulationsgeschützten Zustandsverlauf, der namensgebende Ledger, und ermöglicht Zugriff auf selbigen. Ethereum ist einer der ersten Distributed Ledger, der sogenannte Smart Contracts ermöglicht. Dabei handelt es sich um Programme, die auf einem Distributed Ledger installiert und ausgeführt werden und damit einen eindeutig referenzierbaren Teil des Ledgerzustandes etablieren und verwalten. Einzig und allein die Programmierung eines Smart Contracts bestimmt darüber, wer den Teilzustand wann und wie verändern kann. Die erste Forschungsfrage dieser Dissertation zielt auf die Tauglichkeit von Distributed Ledger Technologien hinsichtlich der Etablierung, Verwaltung, und Nutzung von Softwareidentitäten ab. Insbesondere untersuchen wir, wie nützliche Eigenschaften für Softwareidentitätsmanagement und -nutzung von den Sicherheitseigenschaften des zugrundeliegenden Distributed Ledgers und weiteren Annahmen abgeleitet werden können. Neben der Verwendung von Softwareidentitäten zur weiteren Absicherung der Softwaredistribution untersuchen wir außerdem ihre Nutzbarkeit als Grundlage für unabhängige Begutachtungen von Softwareversionen. Die Durchführung solcher unabhängigen Begutachtungen mittels Distributed Ledgern führt unweigerlich zu einer Herausforderung hinsichtlich der koordinierten Offenlegung der Ergebnisse. Zum Zeitpunkt der Abfassung dieser Arbeit bietet kein Distributed Ledger eine entsprechende Funktionalität, um die Erstellung einer Menge unabhängig erstellter Aussagen zu unterstützen oder zu dokumentieren. Die zweite Forschungsfrage dieser Arbeit befasst sich deshalb mit der Umsetzung eines Offenlegungsmechanismus für Distributed Ledger basierend auf bestehenden kryptografischen Primitiven. Wir behandeln beide Forschungsfragen, indem wir entsprechende dezentrale Anwendungen konzipieren, implementieren, und evaluieren. Wir nutzen dabei Ethereum als prominentestes Exemplar eines Smart-Contract-fähigen Distributed Ledgers. Genauer gesagt messen wir die Installations- und Ausführungskosten jener Smart Contracts, die für unsere dezentralen Anwendungen nötig sind, um ihre praktische Tauglichkeit zu bestimmen. In zwei Fällen ermitteln wir außerdem den Rechenaufwand, der abseits des Ledgers anfällt. Wir zeigen zudem semi-formal, wie die Sicherheitseigenschaften unserer Proof of Concept Implementierung von dem zugrundeliegenden Distributed Ledger und weiteren Annahmen abgeleitet werden können. Wir kommen zu dem Ergebnis, dass Ethereum stellvertretend für Smart-Contract-fähige Distributed Ledger eine taugliche Plattform für die Umsetzung von Softwareidentitäten ist, inklusive der zuvor angemerkten unabhängigen Begutachtungen. Da unser Konzept des Softwareidentitätsmanagements auf eher grundlegenden Eigenschaften von Distributed Ledgern fußt sollte es sich gut auf andere Systeme übertragen lassen. Im Gegensatz dazu erfordert unser Konzept für einen Offenlegungsmechanismus die Unterstützung von bestimmten kryptografischen Operationen auf dem verwendeten Ledger, was die Übertragbarkeit entsprechend einschränkt. Die Kosten für die Installation der nötigen Smart Contracts sind signifikant größer als die Ausführungskosten im typischen Gebrauch, weshalb wir für zukünftige Arbeit empfehlen, die Wiederverwendbarkeit von installierten Smart Contract Instanzen zu verbessern. Bei der koordinierten Offenlegung von unabhängig erstellten Aussagen auf einem Distributed Ledger erzielen wir eine Reduktion der Gesamtkosten von 20–40 % im Vergleich zu verwandter Arbeit, indem wir unterschiedliche kryptografische Anforderungen ausnutzen. Unser Ansatz um eine koordinierte Offenlegung auf Ethereum zu erzielen stützt sich auf Elliptische-Kurven-Operationen die, obwohl ausreichend, zum aktuellen Zeitpunkt sehr eingeschränkt sind. Entsprechend trägt unsere Arbeit einen weiteren Grund für die Erweiterung der unterstützten elliptischen Kurven im Zuge der Weiterentwicklung von Ethereum bei

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V

    A Survey on Layer-Wise Security Attacks in IoT: Attacks, Countermeasures, and Open-Issues

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Security is a mandatory issue in any network, where sensitive data are transferred safely in the required direction. Wireless sensor networks (WSNs) are the networks formed in hostile areas for different applications. Whatever the application, the WSNs must gather a large amount of sensitive data and send them to an authorized body, generally a sink. WSN has integrated with Internet-of-Things (IoT) via internet access in sensor nodes along with internet-connected devices. The data gathered with IoT are enormous, which are eventually collected by WSN over the Internet. Due to several resource constraints, it is challenging to design a secure sensor network, and for a secure IoT it is essential to have a secure WSN. Most of the traditional security techniques do not work well for WSN. The merger of IoT and WSN has opened new challenges in designing a secure network. In this paper, we have discussed the challenges of creating a secure WSN. This research reviews the layer-wise security protocols for WSN and IoT in the literature. There are several issues and challenges for a secure WSN and IoT, which we have addressed in this research. This research pinpoints the new research opportunities in the security issues of both WSN and IoT. This survey climaxes in abstruse psychoanalysis of the network layer attacks. Finally, various attacks on the network using Cooja, a simulator of ContikiOS, are simulated.Peer reviewe

    Context-Aware Privacy Protection Framework for Wireless Sensor Networks

    Get PDF

    Survey: An overview of lightweight RFID authentication protocols suitable for the maritime internet of things

    Get PDF
    The maritime sector employs the Internet of Things (IoT) to exploit many of its benefits to maintain a competitive advantage and keep up with the growing demands of the global economy. The maritime IoT (MIoT) not only inherits similar security threats as the general IoT, it also faces cyber threats that do not exist in the traditional IoT due to factors such as the support for long-distance communication and low-bandwidth connectivity. Therefore, the MIoT presents a significant concern for the sustainability and security of the maritime industry, as a successful cyber attack can be detrimental to national security and have a flow-on effect on the global economy. A common component of maritime IoT systems is Radio Frequency Identification (RFID) technology. It has been revealed in previous studies that current RFID authentication protocols are insecure against a number of attacks. This paper provides an overview of vulnerabilities relating to maritime RFID systems and systematically reviews lightweight RFID authentication protocols and their impacts if they were to be used in the maritime sector. Specifically, this paper investigates the capabilities of lightweight RFID authentication protocols that could be used in a maritime environment by evaluating those authentication protocols in terms of the encryption system, authentication method, and resistance to various wireless attacks

    An intent-based blockchain-agnostic interaction environment

    Full text link

    On security and privacy of consensus-based protocols in blockchain and smart grid

    Full text link
    In recent times, distributed consensus protocols have received widespread attention in the area of blockchain and smart grid. Consensus algorithms aim to solve an agreement problem among a set of nodes in a distributed environment. Participants in a blockchain use consensus algorithms to agree on data blocks containing an ordered set of transactions. Similarly, agents in the smart grid employ consensus to agree on specific values (e.g., energy output, market-clearing price, control parameters) in distributed energy management protocols. This thesis focuses on the security and privacy aspects of a few popular consensus-based protocols in blockchain and smart grid. In the blockchain area, we analyze the consensus protocol of one of the most popular payment systems: Ripple. We show how the parameters chosen by the Ripple designers do not prevent the occurrence of forks in the system. Furthermore, we provide the conditions to prevent any fork in the Ripple network. In the smart grid area, we discuss the privacy issues in the Economic Dispatch (ED) optimization problem and some of its recent solutions using distributed consensus-based approaches. We analyze two state of the art consensus-based ED protocols from Yang et al. (2013) and Binetti et al. (2014). We show how these protocols leak private information about the participants. We propose privacy-preserving versions of these consensus-based ED protocols. In some cases, we also improve upon the communication cost

    Data security in cloud storage services

    Get PDF
    Cloud Computing is considered to be the next-generation architecture for ICT where it moves the application software and databases to the centralized large data centers. It aims to offer elastic IT services where clients can benefit from significant cost savings of the pay-per-use model and can easily scale up or down, and do not have to make large investments in new hardware. However, the management of the data and services in this cloud model is under the control of the provider. Consequently, the cloud clients have less control over their outsourced data and they have to trust cloud service provider to protect their data and infrastructure from both external and internal attacks. This is especially true with cloud storage services. Nowadays, users rely on cloud storage as it offers cheap and unlimited data storage that is available for use by multiple devices (e.g. smart phones, tablets, notebooks, etc.). Besides famous cloud storage providers, such as Amazon, Google, and Microsoft, more and more third-party cloud storage service providers are emerging. These services are dedicated to offering more accessible and user friendly storage services to cloud customers. Examples of these services include Dropbox, Box.net, Sparkleshare, UbuntuOne or JungleDisk. These cloud storage services deliver a very simple interface on top of the cloud storage provided by storage service providers. File and folder synchronization between different machines, sharing files and folders with other users, file versioning as well as automated backups are the key functionalities of these emerging cloud storage services. Cloud storage services have changed the way users manage and interact with data outsourced to public providers. With these services, multiple subscribers can collaboratively work and share data without concerns about their data consistency, availability and reliability. Although these cloud storage services offer attractive features, many customers have not adopted these services. Since data stored in these services is under the control of service providers resulting in confidentiality and security concerns and risks. Therefore, using cloud storage services for storing valuable data depends mainly on whether the service provider can offer sufficient security and assurance to meet client requirements. From the way most cloud storage services are constructed, we can notice that these storage services do not provide users with sufficient levels of security leading to an inherent risk on users\u27 data from external and internal attacks. These attacks take the form of: data exposure (lack of data confidentiality); data tampering (lack of data integrity); and denial of data (lack of data availability) by third parties on the cloud or by the cloud provider himself. Therefore, the cloud storage services should ensure the data confidentiality in the following state: data in motion (while transmitting over networks), data at rest (when stored at provider\u27s disks). To address the above concerns, confidentiality and access controllability of outsourced data with strong cryptographic guarantee should be maintained. To ensure data confidentiality in public cloud storage services, data should be encrypted data before it is outsourced to these services. Although, users can rely on client side cloud storage services or software encryption tools for encrypting user\u27s data; however, many of these services fail to achieve data confidentiality. Box, for example, does not encrypt user files via SSL and within Box servers. Client side cloud storage services can intentionally/unintentionally disclose user decryption keys to its provider. In addition, some cloud storage services support convergent encryption for encrypting users\u27 data exposing it to “confirmation of a file attack. On the other hand, software encryption tools use full-disk encryption (FDE) which is not feasible for cloud-based file sharing services, because it encrypts the data as virtual hard disks. Although encryption can ensure data confidentiality; however, it fails to achieve fine-grained access control over outsourced data. Since, public cloud storage services are managed by un-trusted cloud service provider, secure and efficient fine-grained access control cannot be realized through these services as these policies are managed by storage services that have full control over the sharing process. Therefore, there is not any guarantee that they will provide good means for efficient and secure sharing and they can also deduce confidential information about the outsourced data and users\u27 personal information. In this work, we would like to improve the currently employed security measures for securing data in cloud store services. To achieve better data confidentiality for data stored in the cloud without relying on cloud service providers (CSPs) or putting any burden on users, in this thesis, we designed a secure cloud storage system framework that simultaneously achieves data confidentiality, fine-grained access control on encrypted data and scalable user revocation. This framework is built on a third part trusted (TTP) service that can be employed either locally on users\u27 machine or premises, or remotely on top of cloud storage services. This service shall encrypts users data before uploading it to the cloud and decrypts it after downloading from the cloud; therefore, it remove the burden of storing, managing and maintaining encryption/decryption keys from data owner\u27s. In addition, this service only retains user\u27s secret key(s) not data. Moreover, to ensure high security for these keys, it stores them on hardware device. Furthermore, this service combines multi-authority ciphertext policy attribute-based encryption (CP-ABE) and attribute-based Signature (ABS) for achieving many-read-many-write fine-grained data access control on storage services. Moreover, it efficiently revokes users\u27 privileges without relying on the data owner for re-encrypting massive amounts of data and re-distributing the new keys to the authorized users. It removes the heavy computation of re-encryption from users and delegates this task to the cloud service provider (CSP) proxy servers. These proxy servers achieve flexible and efficient re-encryption without revealing underlying data to the cloud. In our designed architecture, we addressed the problem of ensuring data confidentiality against cloud and against accesses beyond authorized rights. To resolve these issues, we designed a trusted third party (TTP) service that is in charge of storing data in an encrypted format in the cloud. To improve the efficiency of the designed architecture, the service allows the users to choose the level of severity of the data and according to this level different encryption algorithms are employed. To achieve many-read-many-write fine grained access control, we merge two algorithms (multi-authority ciphertext policy attribute-based encryption (MA- CP-ABE) and attribute-based Signature (ABS)). Moreover, we support two levels of revocation: user and attribute revocation so that we can comply with the collaborative environment. Last but not least, we validate the effectiveness of our design by carrying out a detailed security analysis. This analysis shall prove the correctness of our design in terms of data confidentiality each stage of user interaction with the cloud
    corecore