48,808 research outputs found

    Group Key Rekeying Technique with Secure Data Encryption in MANETs

    Get PDF
    A Mobile Ad hoc Network (MANET) is a collection of autonomous nodes or mobile devices that can arrange themselves in various ways and operate without strict network administration. Ensuring security in mobile ad hoc network is a challenging issue and most of the applications in mobile ad hoc networks involve group-oriented communication. In Mobile ad-hoc network, each node treated as a terminal and also acts as an intermediate router. In this scenario, multi-hop occurs for communication in mobile ad hoc network. There may be a possibility of threats and malicious nodes in between source and destination. Providing the security in MANET is entirely different from the traditional wired network. In the present scenario, various applications of the mobile ad hoc network have been proposed and issues are solved by using the cryptographic techniques. Mostly cryptographic techniques are used to provide the security to MANETs. Cryptographic techniques will not be efficient security mechanism if the key management is weak. The purpose of key management is to provide secure procedures for handling keys in the cryptographic technique. The responsibilities of key management include key generation, key distribution, and key maintenance. Several key management schemes have been introduced for MANETs. The Group key management scheme is an efficient method for key management in MANET. In group key management scheme, rekeying is used whenever a new node joins or existing node leaves from the group. In this paper, we propose a periodic rekeying method (PRK) and analyze the performance of LKH rekeying techniques in a group key management schemes. The symmetric encryption techniques are analyzed with different parameters, such as Throughput and Energy consumption. Security and performance of rekeying protocols are analyzed through detailed study and simulation

    ADAPTIVE SECURE AND EFFICIENT ROUTING PROTOCOL FOR ENHANCE THE PERFORMANCE OF MOBILE AD HOC NETWORK

    Get PDF
    Nowadays Mobile Ad Hoc Network (MANET) is an emerging area of research to provide various communication services to end users. Mobile Ad Hoc Networks (MANETs) are self-organizing wireless networks where nodes communicate with each other without a fixed infrastructure. Due to their unique characteristics, such as mobility, autonomy, and ad hoc connectivity, MANETs have become increasingly popular in various applications, including military, emergency response, and disaster management. However, the lack of infrastructure and dynamic topology of MANETs pose significant challenges to designing a secure and efficient routing protocol. This paper proposes an adaptive, secure, and efficient routing protocol that can enhance the performance of MANET. The proposed protocol incorporates various security mechanisms, including authentication, encryption, key management, and intrusion detection, to ensure secure routing. Additionally, the protocol considers energy consumption, network load, packet delivery fraction, route acquisition latency, packets dropped and Quality of Service (QoS) requirements of the applications to optimize network performance. Overall, the secure routing protocol for MANET should provide a reliable and secure communication environment that can adapt to the dynamic nature of the network. The protocol should ensure that messages are delivered securely and efficiently to the intended destination, while minimizing the risk of attacks and preserving the network resources Simulation results demonstrate that the proposed protocol outperforms existing routing protocols in terms of network performance and security. The proposed protocol can facilitate the deployment of various applications in MANET while maintaining security and efficiency

    Security in Ad-Hoc Routing Protocols

    Full text link
    Mobile Ad-Hoc Networks (MANETs) are becoming increasingly popular as more and more mobile devices find their way to the public, besides traditional" uses such as military battlefields and disaster situations they are being used more and more in every-day situations. With this increased usage comes the need for making the networks secure as well as efficient, something that is not easily done as many of the demands of network security conflicts with the demands on mobile networks due to the nature of the mobile devices (e.g. low power consumption, low processing load). The concept and structure of MANETs make them prone to be easily attacked using several techniques often used against wired networks as well as new methods particular to MANETs. Security issues arise in many different areas including physical security, key management, routing and intrusion detection, many of which are vital to a functional MANET. In this paper we focus on the security issues related to ad hoc routing protocols in particular. The routing in ad hoc networks remains a key issue since without properly functioning routing protocols, the network simply will not work the way it's intended to. Unfortunately, routing may also be one of the most difficult areas to protect against attacks because of the ad hoc nature of MANETs. We will present the main security risks involved in ad-hoc routing as well as the solutions to these problems that are available today.

    An Efficient Distributed Group Key Management Using Hierarchical Approach with ECDH and Symmetric Algorithm

    Get PDF
    Ensuring secure communication in an ad hoc network is extremely challenging because of the dynamic nature of the network and the lack of centralized management. For this reason, key management is particularly difficult to implement in such networks. Secure group communication is an increasingly popular research area having received much attention in recent years. Group key management is a fundamental building block for secure group communication systems. We will present an efficient many-to-many group key management protocol in distributed group communication. In this protocol, group members are managed in the hierarchical manner logically. Two kinds of keys are used, asymmetric and symmetric keys. The leaf nodes in the key tree are the asymmetric keys of the corresponding group members and all the intermediate node keys are symmetric keys assigned to each intermediate node. For asymmetric key, a more efficient key agreement will be introduced. To calculate intermediate node keys, members use codes assigned to each intermediate node key tree. Group members calculate intermediate node keys rather than distributed by a sponsor member. The features of this approach are that, no keys are exchanged between existing members at join, and only one key, the group key, is delivered to remaining members at leave. Keywords: Elliptic Curve, Distributed Group Key Management, Hierarchical Key Management, Mobile Ad-hoc network (MANET)

    An identity-based broadcast encryption scheme for mobile ad hoc networks, Journal of Telecommunications and Information Technology, 2006, nr 1

    Get PDF
    Dynamic ad hoc networks facilitate interconnections between mobile devices without the support of any network infrastructure. In this paper, we propose a secure identity-based ad hoc protocol for mobile devices to construct a group key for a setup of a secure communication network in an efficient way and support dynamic changing of network topology. Unlike group key management protocols proposed previously in the literature, mobile devices can use our protocol to construct the group key by observing the others’ identity, like the MAC address, which distinguishes the device from the others. In contrast to other interactive protocols, we only need one broadcast to setup the group key and member removal is also highly efficient. Finally, we discuss the security issues and provide security proofs for our protocol

    An Enhanced Hybrid Key Management Protocol for Secure Multicast in Ad Hoc Networks

    Full text link
    Colloque avec actes et comité de lecture. internationale.International audienceAn ad hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any established infrastructure or centralized administration. This exibility in space and time induces new challenges towards the security infrastructure needed to support secure unicast and multicast communications. Especially, traditional group key management architectures meant for wired networks are not appropriate in such environment due to high dynamics and mobility of nodes. In this paper, we propose an enhanced hybrid key management protocol for secure multicast dedicated to operate in ad hoc networks. Built on a protocol called BAAL dedicated to key distribution in wired networks, our approach integrates threshold cryptography and the services of the AKMP protocol to deliver fast, efficient and mobility aware key distribution in a multicast service
    corecore