6,038 research outputs found

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Literature Survey on Secure Multiparty Anonymous Data Sharing

    Get PDF
    The  popularity of internet as a communication medium whether for personal or business requires anonymous communication in various ways. Businesses also have legitimate reasons to make communication anonymous and avoid the consequences of identity revelation. The problem of sharing privately held data so that the individuals who are the subjects of the data cannot be identified has been researched extensively. Researchers have understood the need of anonymity in various application domains: patient medical records, electronic voting, e-mail, social networking, etc. Another form of anonymity, as used in secure multiparty computation, allows multiple parties on a network to jointly carry out a global computation that depends on data from each party while the data held by each party remains unknown to the other parties. The secure computation function widely used is secure sum that allows parties to compute the sum of their individual inputs without mentioning the inputs to one another. This function helps to characterize the complexities of the secure multiparty computation. Keywords:Anonymity,Secure multiparty computatio

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Fabric-GC: A Blockchain-based Gantt Chart System for Cross-organizational Project Management

    Full text link
    Large-scale production is always associated with more and more development and interaction among peers, and many fields achieve higher economic benefits through project cooperation. However, project managers in the traditional centralized approach cannot rearrange their activities to cross-organizational project management. Thanks to its characteristics, the Blockchain can represent a valid solution to the problems mentioned above. In this article, we propose Fabric-GC, a Blockchain-based Gantt chart system. Fabric-GC enables to realize secure and effective cross-organizational cooperation for project management, providing access control to multiple parties for project visualization. Compared with other solutions, the proposed system is versatile, as it can be applied to project management in different fields and achieve effective and agile scheduling. Experimental results show that Fabric-GC achieves stable performance in large-scale request and processing distributed environments, where the data synchronization speed of the consortium chain reached four times faster than a public chain, achieving faster data consistency

    Decentralized Identities for Self-sovereign End-users (DISSENS)

    Get PDF
    This paper describes a comprehensive architecture and reference implementation for privacy-preserving identity management that bucks the trend towards centralization present in contemporary proposals. DISSENS integrates a technology stack which combines privacy-friendly online payments with self-sovereign personal data management using a decentralized directory service. This enables users to be in complete control of their digital identity and personal information while at the same time being able to selectively share information necessary to easily use commercial services. Our pilot demonstrates the viability of a sustainable, user-centric, standards-compliant and accessible use case for public service employees and students in the domain of retail e-commerce. We leverage innovative technologies including self-sovereign identity, privacy credentials, and privacy-friendly digital payments in combination with established standards to provide easy-to-adapt templates for the integration of various scenarios and use cases

    Security for networked smart healthcare systems: A systematic review

    Get PDF
    Background and Objectives Smart healthcare systems use technologies such as wearable devices, Internet of Medical Things and mobile internet technologies to dynamically access health information, connect patients to health professionals and health institutions, and to actively manage and respond intelligently to the medical ecosystem's needs. However, smart healthcare systems are affected by many challenges in their implementation and maintenance. Key among these are ensuring the security and privacy of patient health information. To address this challenge, several mitigation measures have been proposed and some have been implemented. Techniques that have been used include data encryption and biometric access. In addition, blockchain is an emerging security technology that is expected to address the security issues due to its distributed and decentralized architecture which is similar to that of smart healthcare systems. This study reviewed articles that identified security requirements and risks, proposed potential solutions, and explained the effectiveness of these solutions in addressing security problems in smart healthcare systems. Methods This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines and was framed using the Problem, Intervention, Comparator, and Outcome (PICO) approach to investigate and analyse the concepts of interest. However, the comparator is not applicable because this review focuses on the security measures available and in this case no comparable solutions were considered since the concept of smart healthcare systems is an emerging one and there are therefore, no existing security solutions that have been used before. The search strategy involved the identification of studies from several databases including the Cumulative Index of Nursing and Allied Health Literature (CINAL), Scopus, PubMed, Web of Science, Medline, Excerpta Medical database (EMBASE), Ebscohost and the Cochrane Library for articles that focused on the security for smart healthcare systems. The selection process involved removing duplicate studies, and excluding studies after reading the titles, abstracts, and full texts. Studies whose records could not be retrieved using a predefined selection criterion for inclusion and exclusion were excluded. The remaining articles were then screened for eligibility. A data extraction form was used to capture details of the screened studies after reading the full text. Of the searched databases, only three yielded results when the search strategy was applied, i.e., Scopus, Web of science and Medline, giving a total of 1742 articles. 436 duplicate studies were removed. Of the remaining articles, 801 were excluded after reading the title, after which 342 after were excluded after reading the abstract, leaving 163, of which 4 studies could not be retrieved. 159 articles were therefore screened for eligibility after reading the full text. Of these, 14 studies were included for detailed review using the formulated research questions and the PICO framework. Each of the 14 included articles presented a description of a smart healthcare system and identified the security requirements, risks and solutions to mitigate the risks. Each article also summarized the effectiveness of the proposed security solution. Results The key security requirements reported were data confidentiality, integrity and availability of data within the system, with authorisation and authentication used to support these key security requirements. The identified security risks include loss of data confidentiality due to eavesdropping in wireless communication mediums, authentication vulnerabilities in user devices and storage servers, data fabrication and message modification attacks during transmission as well as while the data is at rest in databases and other storage devices. The proposed mitigation measures included the use of biometric accessing devices; data encryption for protecting the confidentiality and integrity of data; blockchain technology to address confidentiality, integrity, and availability of data; network slicing techniques to provide isolation of patient health data in 5G mobile systems; and multi-factor authentication when accessing IoT devices, servers, and other components of the smart healthcare systems. The effectiveness of the proposed solutions was demonstrated through their ability to provide a high level of data security in smart healthcare systems. For example, proposed encryption algorithms demonstrated better energy efficiency, and improved operational speed; reduced computational overhead, better scalability, efficiency in data processing, and better ease of deployment. Conclusion This systematic review has shown that the use of blockchain technology, biometrics (fingerprints), data encryption techniques, multifactor authentication and network slicing in the case of 5G smart healthcare systems has the potential to alleviate possible security risks in smart healthcare systems. The benefits of these solutions include a high level of security and privacy for Electronic Health Records (EHRs) systems; improved speed of data transaction without the need for a decentralized third party, enabled by the use of blockchain. However, the proposed solutions do not address data protection in cases where an intruder has already accessed the system. This may be potential avenues for further research and inquiry

    Towards Practical Access Control and Usage Control on the Cloud using Trusted Hardware

    Get PDF
    Cloud-based platforms have become the principle way to store, share, and synchronize files online. For individuals and organizations alike, cloud storage not only provides resource scalability and on-demand access at a low cost, but also eliminates the necessity of provisioning and maintaining complex hardware installations. Unfortunately, because cloud-based platforms are frequent victims of data breaches and unauthorized disclosures, data protection obliges both access control and usage control to manage user authorization and regulate future data use. Encryption can ensure data security against unauthorized parties, but complicates file sharing which now requires distributing keys to authorized users, and a mechanism that prevents revoked users from accessing or modifying sensitive content. Further, as user data is stored and processed on remote ma- chines, usage control in a distributed setting requires incorporating the local environmental context at policy evaluation, as well as tamper-proof and non-bypassable enforcement. Existing cryptographic solutions either require server-side coordination, offer limited flexibility in data sharing, or incur significant re-encryption overheads on user revocation. This combination of issues are ill-suited within large-scale distributed environments where there are a large number of users, dynamic changes in user membership and access privileges, and resources are shared across organizational domains. Thus, developing a robust security and privacy solution for the cloud requires: fine-grained access control to associate the largest set of users and resources with variable granularity, scalable administration costs when managing policies and access rights, and cross-domain policy enforcement. To address the above challenges, this dissertation proposes a practical security solution that relies solely on commodity trusted hardware to ensure confidentiality and integrity throughout the data lifecycle. The aim is to maintain complete user ownership against external hackers and malicious service providers, without losing the scalability or availability benefits of cloud storage. Furthermore, we develop a principled approach that is: (i) portable across storage platforms without requiring any server-side support or modifications, (ii) flexible in allowing users to selectively share their data using fine-grained access control, and (iii) performant by imposing modest overheads on standard user workloads. Essentially, our system must be client-side, provide end-to-end data protection and secure sharing, without significant degradation in performance or user experience. We introduce NeXUS, a privacy-preserving filesystem that enables cryptographic protection and secure file sharing on existing network-based storage services. NeXUS protects the confidentiality and integrity of file content, as well as file and directory names, while mitigating against rollback attacks of the filesystem hierarchy. We also introduce Joplin, a secure access control and usage control system that provides practical attribute-based sharing with decentralized policy administration, including efficient revocation, multi-domain policies, secure user delegation, and mandatory audit logging. Both systems leverage trusted hardware to prevent the leakage of sensitive material such as encryption keys and access control policies; they are completely client-side, easy to install and use, and can be readily deployed across remote storage platforms without requiring any server-side changes or trusted intermediary. We developed prototypes for NeXUS and Joplin, and evaluated their respective overheads in isolation and within a real-world environment. Results show that both prototypes introduce modest overheads on interactive workloads, and achieve portability across storage platforms, including Dropbox and AFS. Together, NeXUS and Joplin demonstrate that a client-side solution employing trusted hardware such as Intel SGX can effectively protect remotely stored data on existing file sharing services
    • …
    corecore