6,965 research outputs found

    A study of publish/subscribe systems for real-time grid monitoring

    Get PDF
    Monitoring and controlling a large number of geographically distributed scientific instruments is a challenging task. Some operations on these instruments require real-time (or quasi real-time) response which make it even more difficult. In this paper, we describe the requirements of distributed monitoring for a possible future electrical power grid based on real-time extensions to grid computing. We examine several standards and publish/subscribe middleware candidates, some of which were specially designed and developed for grid monitoring. We analyze their architecture and functionality, and discuss the advantages and disadvantages. We report on a series of tests to measure their real-time performance and scalability

    HoPP: Robust and Resilient Publish-Subscribe for an Information-Centric Internet of Things

    Full text link
    This paper revisits NDN deployment in the IoT with a special focus on the interaction of sensors and actuators. Such scenarios require high responsiveness and limited control state at the constrained nodes. We argue that the NDN request-response pattern which prevents data push is vital for IoT networks. We contribute HoP-and-Pull (HoPP), a robust publish-subscribe scheme for typical IoT scenarios that targets IoT networks consisting of hundreds of resource constrained devices at intermittent connectivity. Our approach limits the FIB tables to a minimum and naturally supports mobility, temporary network partitioning, data aggregation and near real-time reactivity. We experimentally evaluate the protocol in a real-world deployment using the IoT-Lab testbed with varying numbers of constrained devices, each wirelessly interconnected via IEEE 802.15.4 LowPANs. Implementations are built on CCN-lite with RIOT and support experiments using various single- and multi-hop scenarios

    An active, ontology-driven network service for Internet collaboration

    No full text
    Web portals have emerged as an important means of collaboration on the WWW, and the integration of ontologies promises to make them more accurate in how they serve users’ collaboration and information location requirements. However, web portals are essentially a centralised architecture resulting in difficulties supporting seamless roaming between portals and collaboration between groups supported on different portals. This paper proposes an alternative approach to collaboration over the web using ontologies that is de-centralised and exploits content-based networking. We argue that this approach promises a user-centric, timely, secure and location-independent mechanism, which is potentially more scaleable and universal than existing centralised portals

    My Private Cloud Overview: A Trust, Privacy and Security Infrastructure for the Cloud

    Get PDF
    Based on the assumption that cloud providers can be trusted (to a certain extent) we define a trust, security and privacy preserving infrastructure that relies on trusted cloud providers to operate properly. Working in tandem with legal agreements, our open source software supports: trust and reputation management, sticky policies with fine grained access controls, privacy preserving delegation of authority, federated identity management, different levels of assurance and configurable audit trails. Armed with these tools, cloud service providers are then able to offer a reliable privacy preserving infrastructure-as-a-service to their clients

    A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration

    Get PDF
    The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.Peer ReviewedPostprint (author's final draft
    • …
    corecore