3,942 research outputs found

    When Does Relay Transmission Give a More Secure Connection in Wireless Ad Hoc Networks?

    Full text link
    Relay transmission can enhance coverage and throughput, while it can be vulnerable to eavesdropping attacks due to the additional transmission of the source message at the relay. Thus, whether or not one should use relay transmission for secure communication is an interesting and important problem. In this paper, we consider the transmission of a confidential message from a source to a destination in a decentralized wireless network in the presence of randomly distributed eavesdroppers. The source-destination pair can be potentially assisted by randomly distributed relays. For an arbitrary relay, we derive exact expressions of secure connection probability for both colluding and non-colluding eavesdroppers. We further obtain lower bound expressions on the secure connection probability, which are accurate when the eavesdropper density is small. By utilizing these lower bound expressions, we propose a relay selection strategy to improve the secure connection probability. By analytically comparing the secure connection probability for direct transmission and relay transmission, we address the important problem of whether or not to relay and discuss the condition for relay transmission in terms of the relay density and source-destination distance. These analytical results are accurate in the small eavesdropper density regime.Comment: Accepted for publication in IEEE Transactions On Information Forensics and Securit

    Wireless Secrecy in Large-Scale Networks

    Get PDF
    The ability to exchange secret information is critical to many commercial, governmental, and military networks. The intrinsically secure communications graph (iS-graph) is a random graph which describes the connections that can be securely established over a large-scale network, by exploiting the physical properties of the wireless medium. This paper provides an overview of the main properties of this new class of random graphs. We first analyze the local properties of the iS-graph, namely the degree distributions and their dependence on fading, target secrecy rate, and eavesdropper collusion. To mitigate the effect of the eavesdroppers, we propose two techniques that improve secure connectivity. Then, we analyze the global properties of the iS-graph, namely percolation on the infinite plane, and full connectivity on a finite region. These results help clarify how the presence of eavesdroppers can compromise secure communication in a large-scale network.Comment: To appear: Proc. IEEE Information Theory and Applications Workshop (ITA'11), San Diego, CA, Feb. 2011, pp. 1-10, Invited Pape
    • …
    corecore