107 research outputs found

    Determination of optically stimulated luminescence dosimetric characteristics and suitability for entrance surface dose assessement in diagnostic x-ray examinations

    Get PDF
    The availability of Optically Stimulated Luminescence (OSL) dosimeter system developed by Landauer Inc. (Glenwood IL) has greatly improved radiation dosimetry application in the medical field. Recent studies with OSL dosimeters (nanoDots) gave much emphases to patient radiation exposure in radiotherapy but ignoring the potential risks from radiographic examinations. This study focused on the measurement of entrance surface dose (ESD) resulting from radiographic examination. Monitoring procedures have been developed by the International Atomic Energy Agency (IAEA) to estimate ESD, while considering exposure parameters and patient’s characteristics. However, dosimetric properties of the OSL system must be characterized to ascertain its suitability for ESD measurements in medical radiography due to energy dependence and over-response factors of the Al2O3 material. This thesis consists of three phases: 1) evaluating stability of the new OSL dosimetry system, 2) characterizing the nanoDots in radiographic energy range from 40 kV to 150 kV with typical doses ranging from 0 to 20 mGy, and 3) assessing suitability of the nanoDots for ESD measurement in routine X-ray examinations. The dosimetric characteristics of the nanoDots in the above energy range are presented in this study, including repeatability, reproducibility, signal depletion, element correction factor, linearity, angular and energy dependence, and dose measurement accuracy. Experimental results showed repeatability of below 5% and reproducibility of less than 2%. OSL signals after sequential readouts were reduced by approximately 0.5% per readout and having good linearity for doses between 5 – 20 mGy. The nanoDots OSL dosimeter showed significant angular and energy dependence in this energy range, and corresponding energy correction factors were determined in the range of 0.76 – 1.12. ESDs were determined in common diagnostic X-ray examinations using three different methods including direct (measured on phantom/patient) and indirect (without phantom) measurements with nanoDots OSL dosimeters, and CALDose_X 5.0 software calculations. Results from direct and indirect ESD measurements showed good agreement within relative uncertainties of 5.9% and 12%, respectively, in accordance with the International Electrotechnical Commission (IEC) 61674 specifications. However, the measured results were below ESDs calculated with CALDose_X 5.0 software. Measured eye and gonad doses were found to be significant compared to ESDs during anterior-posterior (AP) abdomen and AP skull examinations, respectively. The results obtained in this research work indicate the suitability of utilizing nanoDots OSL dosimeter for entrance surface dose assessment during diagnostic X-ray examinations

    Beamforming and non-orthogonal multiple access for rate and secrecy enhancement of fifth generation communication system

    Get PDF
    The fifth-generation (5G) communication systems have many anticipated functionalities and requirements such as high data rate, massive connectivity, wide coverage area, low latency and enhanced secrecy performance. In order to meet these criteria, communication schemes that combine 5G key enabling technologies need to be investigated. In this thesis, a novel communication system that merges non-orthogonal multiple access (NOMA), energy harvesting, beamforming, and full-duplex (FD) techniques in order to enhance both capacity and secrecy of 5G system is introduced. In the capacity improving scheme, NOMA is first combined with beamforming to serve more than one user in each beamforming vector. Next, simultaneous wireless information and power transfer (SWIPT) technique is exploited to encourage the strong user (user with better channel condition) to relay the information messages of the weak user (user with poor channel condition) in FD manner. The total sum rate maximisation problem is formulated and solved by means of convex-concave procedure. The system performance is also analysed by deriving the outage probability of both users. Additionally, the model is extended to a more general case wherein the users are moving, and the outage probability of this dynamic topology is provided by means of the stochastic geometry framework. Novel secure schemes are also introduced to safeguard legitimate users’ information from internal and external eavesdroppers. In the internal eavesdropper’s case, artificial signal concept is adopted to protect NOMA’s weak user’s information from being intercepted by the strong user. The secrecy outage probability of theweak user is derived and validated. In addition, game theory discipline is exploited to provide an efficient eavesdropping avoidance algorithm. Null-steering beamforming is adopted in the external eavesdropper’s case in two different schemes namely self and nonself-cooperative jamming. In self-cooperative strategy, the base station applies the null-steering jamming to impair the eavesdropper channel, while sending the information-bearing signals to the intended legitimate users. Whereas in the nonself-cooperative jamming scheme, the base station provides the helpers with the required information and power by means of SWIPT technique in the first phase. The helpers deploy null-steering beamforming to jam the eavesdropper during the information exchange between the base station and the intended users in the second phase. The secrecy outage probability of the legitimate users is derived in both jamming schemes. Game theory is also introduced to the nonself-cooperative jamming scheme for further improvements on the secrecy outage behaviour and the economic revenue of the system. The proposed capacity enhancing scheme demonstrates about 200% higher sum rate when compared with the non-cooperative and half-duplex cooperative NOMA systems. In addition, the novel secure scheme in the internal eavesdropper case is proven to enhance the information security of the weak user without compromising the functionalities of the strong user or NOMA superiority over orthogonal multiple access systems. Null-steering based jamming system also illustrates improved secrecy performance in the external eavesdropper case when compared to the conventional jamming schemes. Numerical simulations are carried out in order to validate the derived closed-form expressions and to illustrate the performance enhancement achieved by the proposed schemes where the rate is increased by 200% and the secrecy outage probability is decreased by 33% when compared to the baseline systems

    DESIGN AND OPTIMIZATION OF SIMULTANEOUS WIRELESS INFORMATION AND POWER TRANSFER SYSTEMS

    Get PDF
    The recent trends in the domain of wireless communications indicate severe upcoming challenges, both in terms of infrastructure as well as design of novel techniques. On the other hand, the world population keeps witnessing or hearing about new generations of mobile/wireless technologies within every half to one decade. It is certain the wireless communication systems have enabled the exchange of information without any physical cable(s), however, the dependence of the mobile devices on the power cables still persist. Each passing year unveils several critical challenges related to the increasing capacity and performance needs, power optimization at complex hardware circuitries, mobility of the users, and demand for even better energy efficiency algorithms at the wireless devices. Moreover, an additional issue is raised in the form of continuous battery drainage at these limited-power devices for sufficing their assertive demands. In this regard, optimal performance at any device is heavily constrained by either wired, or an inductive based wireless recharging of the equipment on a continuous basis. This process is very inconvenient and such a problem is foreseen to persist in future, irrespective of the wireless communication method used. Recently, a promising idea for simultaneous wireless radio-frequency (RF) transmission of information and energy came into spotlight during the last decade. This technique does not only guarantee a more flexible recharging alternative, but also ensures its co-existence with any of the existing (RF-based) or alternatively proposed methods of wireless communications, such as visible light communications (VLC) (e.g., Light Fidelity (Li-Fi)), optical communications (e.g., LASER-equipped communication systems), and far-envisioned quantum-based communication systems. In addition, this scheme is expected to cater to the needs of many current and future technologies like wearable devices, sensors used in hazardous areas, 5G and beyond, etc. This Thesis presents a detailed investigation of several interesting scenarios in this direction, specifically concerning design and optimization of such RF-based power transfer systems. The first chapter of this Thesis provides a detailed overview of the considered topic, which serves as the foundation step. The details include the highlights about its main contributions, discussion about the adopted mathematical (optimization) tools, and further refined minutiae about its organization. Following this, a detailed survey on the wireless power transmission (WPT) techniques is provided, which includes the discussion about historical developments of WPT comprising its present forms, consideration of WPT with wireless communications, and its compatibility with the existing techniques. Moreover, a review on various types of RF energy harvesting (EH) modules is incorporated, along with a brief and general overview on the system modeling, the modeling assumptions, and recent industrial considerations. Furthermore, this Thesis work has been divided into three main research topics, as follows. Firstly, the notion of simultaneous wireless information and power transmission (SWIPT) is investigated in conjunction with the cooperative systems framework consisting of single source, multiple relays and multiple users. In this context, several interesting aspects like relay selection, multi-carrier, and resource allocation are considered, along with problem formulations dealing with either maximization of throughput, maximization of harvested energy, or both. Secondly, this Thesis builds up on the idea of transmit precoder design for wireless multigroup multicasting systems in conjunction with SWIPT. Herein, the advantages of adopting separate multicasting and energy precoder designs are illustrated, where we investigate the benefits of multiple antenna transmitters by exploiting the similarities between broadcasting information and wirelessly transferring power. The proposed design does not only facilitates the SWIPT mechanism, but may also serve as a potential candidate to complement the separate waveform designing mechanism with exclusive RF signals meant for information and power transmissions, respectively. Lastly, a novel mechanism is developed to establish a relationship between the SWIPT and cache-enabled cooperative systems. In this direction, benefits of adopting the SWIPT-caching framework are illustrated, with special emphasis on an enhanced rate-energy (R-E) trade-off in contrast to the traditional SWIPT systems. The common notion in the context of SWIPT revolves around the transmission of information, and storage of power. In this vein, the proposed work investigates the system wherein both information and power can be transmitted and stored. The Thesis finally concludes with insights on the future directions and open research challenges associated with the considered framework

    6G wireless communications networks: a comprehensive survey

    Get PDF
    The commercial fifth-generation (5G) wireless communications networks have already been deployed with the aim of providing high data rates. However, the rapid growth in the number of smart devices and the emergence of the Internet of Everything (IoE) applications, which require an ultra-reliable and low-latency communication, will result in a substantial burden on the 5G wireless networks. As such, the data rate that could be supplied by 5G networks will unlikely sustain the enormous ongoing data traffic explosion. This has motivated research into continuing to advance the existing wireless networks toward the future generation of cellular systems, known as sixth generation (6G). Therefore, it is essential to provide a prospective vision of the 6G and the key enabling technologies for realizing future networks. To this end, this paper presents a comprehensive review/survey of the future evolution of 6G networks. Specifically, the objective of the paper is to provide a comprehensive review/survey about the key enabling technologies for 6G networks, which include a discussion about the main operation principles of each technology, envisioned potential applications, current state-of-the-art research, and the related technical challenges. Overall, this paper provides useful information for industries and academic researchers and discusses the potentials for opening up new research directions

    Doctor of Philosophy

    Get PDF
    dissertationCross layer system design represents a paradigm shift that breaks the traditional layer-boundaries in a network stack to enhance a wireless network in a number of di erent ways. Existing work has used the cross layer approach to optimize a wireless network in terms of packet scheduling, error correction, multimedia quality, power consumption, selection of modulation/coding and user experience, etc. We explore the use of new cross layer opportunities to achieve secrecy and e ciency of data transmission in wireless networks. In the rst part of this dissertation, we build secret key establishment methods for private communication between wireless devices using the spatio-temporal variations of symmetric-wireless channel measurements. We evaluate our methods on a variety of wireless devices, including laptops, telosB sensor nodes, and Android smartphones, with diverse wireless capabilities. We perform extensive measurements in real-world environments and show that our methods generate high entropy secret bits at a signi cantly faster rate in comparison to existing approaches. While the rst part of this dissertation focuses on achieving secrecy in wireless networks, the second part of this dissertation examines the use of special pulse shaping lters of the lterbank multicarrier (FBMC) physical layer in reliably transmitting data packets at a very high rate. We rst analyze the mutual interference power across subcarriers used by di erent transmitters. Next, to understand the impact of FBMC beyond the physical layer, we devise a distributed and adaptive medium access control protocol that coordinates data packet tra c among the di erent nodes in the network in a best e ort manner. Using extensive simulations, we show that FBMC consistently achieves an order-of-magnitude performance improvement over orthogonal frequency division multiplexing (OFDM) in several aspects, including packet transmission delays, channel access delays, and e ective data transmission rate available to each node in static indoor settings as well as in vehicular networks
    • …
    corecore