1,316 research outputs found

    Analysis of the Communication Traffic for Blockchain Synchronization of IoT Devices

    Full text link
    Blockchain is a technology uniquely suited to support massive number of transactions and smart contracts within the Internet of Things (IoT) ecosystem, thanks to the decentralized accounting mechanism. In a blockchain network, the states of the accounts are stored and updated by the validator nodes, interconnected in a peer-to-peer fashion. IoT devices are characterized by relatively low computing capabilities and low power consumption, as well as sporadic and low-bandwidth wireless connectivity. An IoT device connects to one or more validator nodes to observe or modify the state of the accounts. In order to interact with the most recent state of accounts, a device needs to be synchronized with the blockchain copy stored by the validator nodes. In this work, we describe general architectures and synchronization protocols that enable synchronization of the IoT endpoints to the blockchain, with different communication costs and security levels. We model and analytically characterize the traffic generated by the synchronization protocols, and also investigate the power consumption and synchronization trade-off via numerical simulations. To the best of our knowledge, this is the first study that rigorously models the role of wireless connectivity in blockchain-powered IoT systems.Comment: Paper accepted at IEEE International Conference on Communications (ICC) 201

    When Mobile Blockchain Meets Edge Computing

    Full text link
    Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications, e.g., finance, healthcare, and logistics, its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data, i.e., a block, to the blockchain. Solving the proof-of-work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then, we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.Comment: Accepted by IEEE Communications Magazin

    Security and Privacy for Green IoT-based Agriculture: Review, Blockchain solutions, and Challenges

    Get PDF
    open access articleThis paper presents research challenges on security and privacy issues in the field of green IoT-based agriculture. We start by describing a four-tier green IoT-based agriculture architecture and summarizing the existing surveys that deal with smart agriculture. Then, we provide a classification of threat models against green IoT-based agriculture into five categories, including, attacks against privacy, authentication, confidentiality, availability, and integrity properties. Moreover, we provide a taxonomy and a side-by-side comparison of the state-of-the-art methods toward secure and privacy-preserving technologies for IoT applications and how they will be adapted for green IoT-based agriculture. In addition, we analyze the privacy-oriented blockchain-based solutions as well as consensus algorithms for IoT applications and how they will be adapted for green IoT-based agriculture. Based on the current survey, we highlight open research challenges and discuss possible future research directions in the security and privacy of green IoT-based agriculture

    Internet of things-blockchain lightweight cryptography to data security and integrity for intelligent application

    Get PDF
    The industrial internet of things (IoT) plays a major role in the growth of automation and increasing digital connectivity for machine-to-machine communication. The research community has extensively investigated the possibility of IoT and blockchain integration for the last couple of years. The major research is focused on the benefits of integrating blockchain with IoT. In this work, we first focus on the issue of integrating IoT nodes with blockchain networks, especially for non-real-time IoT nodes that do not have an in-built clock mechanism. As a result, they cannot establish communication with real-time blockchain networks. Another critical security issue is protecting data coming from IoT devices to blockchain networks. Blockchain is enough mature to protect the data in its ecosystem. However, information coming from outside of the world does not have any guarantee of data integrity and security. This paper first addresses the clock synchronization issue of IoT nodes with blockchain using a network time protocol and then proposes an IoT-blockchain light-weight cryptographic (IBLWC) approach to secure the entire IoT-blockchain ecosystem. This paper also presents the performance analysis of IBLWC as a suitable and cost-effective solution that incurs less processing overhead for IoT-blockchain-based applications
    corecore