54 research outputs found

    Bytewise Approximate Matching: The Good, The Bad, and The Unknown

    Get PDF
    Hash functions are established and well-known in digital forensics, where they are commonly used for proving integrity and file identification (i.e., hash all files on a seized device and compare the fingerprints against a reference database). However, with respect to the latter operation, an active adversary can easily overcome this approach because traditional hashes are designed to be sensitive to altering an input; output will significantly change if a single bit is flipped. Therefore, researchers developed approximate matching, which is a rather new, less prominent area but was conceived as a more robust counterpart to traditional hashing. Since the conception of approximate matching, the community has constructed numerous algorithms, extensions, and additional applications for this technology, and are still working on novel concepts to improve the status quo. In this survey article, we conduct a high-level review of the existing literature from a non-technical perspective and summarize the existing body of knowledge in approximate matching, with special focus on bytewise algorithms. Our contribution allows researchers and practitioners to receive an overview of the state of the art of approximate matching so that they may understand the capabilities and challenges of the field. Simply, we present the terminology, use cases, classification, requirements, testing methods, algorithms, applications, and a list of primary and secondary literature

    Adversarial attacks on crowdsourcing quality control

    Get PDF
    Crowdsourcing is a popular methodology to collect manual labels at scale. Such labels are often used to train AI models and, thus, quality control is a key aspect in the process. One of the most popular quality assurance mechanisms in paid micro-task crowdsourcing is based on gold questions: the use of a small set of tasks of which the requester knows the correct answer and, thus, is able to directly assess crowd work quality. In this paper, we show that such mechanism is prone to an attack carried out by a group of colluding crowd workers that is easy to implement and deploy: the inherent size limit of the gold set can be exploited by building an inferential system to detect which parts of the job are more likely to be gold questions. The described attack is robust to various forms of randomisation and programmatic generation of gold questions. We present the architecture of the proposed system, composed of a browser plug-in and an external server used to share information, and briefly introduce its potential evolution to a decentralised implementation. We implement and experimentally validate the gold detection system, using real-world data from a popular crowdsourcing platform. Our experimental results show that crowd workers using the proposed system spend more time on signalled gold questions but do not neglect the others thus achieving an increased overall work quality. Finally, we discuss the economic and sociological implications of this kind of attack

    All That Glitters is Gold -- An Attack Scheme on Gold Questions in Crowdsourcing

    Get PDF
    One of the most popular quality assurance mechanisms in paid micro-task crowdsourcing is based on gold questions: the use of a small set of tasks of which the requester knows the correct answer and, thus, is able to directly assess crowd work quality. In this paper, we show that such mechanism is prone to an attack carried out by a group of colluding crowd workers that is easy to implement and deploy: the inherent size limit of the gold set can be exploited by building an inferential system to detect which parts of the job are more likely to be gold questions. The described attack is robust to various forms of randomisation and programmatic generation of gold questions. We present the architecture of the proposed system, composed of a browser plug-in and an external server used to share information, and briefly introduce its potential evolution to a decentralised implementation. We implement and experimentally validate the gold detection system, using real-world data from a popular crowdsourcing platform. Finally, we discuss the economic and sociological implications of this kind of attack

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    Efficient near duplicate document detection for specialized corpora

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 75-77).Knowledge of near duplicate documents can be adventagous to search engines, even those that only cover a small enterprise or specialized corpus. In this thesis, we investigate improvements to simhash, a signature-based method which can be used to efficiently detect near duplicate documents. We implement simhash in its original form, and demonstrate its effectiveness on a small corpus of newspaper articles, and improve its accuracy through utilizing external metadata and altering its feature selection approach. We also demonstrate the fragility of simhash towards changes in the weighting of features by applying novel changes to the weights. As motivation for performing this near duplicate detection, we discuss the impact it can have on search engines.by Shreyes Seshasai.M.Eng

    Efficient Sketching Algorithm for Sparse Binary Data

    Full text link
    Recent advancement of the WWW, IOT, social network, e-commerce, etc. have generated a large volume of data. These datasets are mostly represented by high dimensional and sparse datasets. Many fundamental subroutines of common data analytic tasks such as clustering, classification, ranking, nearest neighbour search, etc. scale poorly with the dimension of the dataset. In this work, we address this problem and propose a sketching (alternatively, dimensionality reduction) algorithm -- \binsketch (Binary Data Sketch) -- for sparse binary datasets. \binsketch preserves the binary version of the dataset after sketching and maintains estimates for multiple similarity measures such as Jaccard, Cosine, Inner-Product similarities, and Hamming distance, on the same sketch. We present a theoretical analysis of our algorithm and complement it with extensive experimentation on several real-world datasets. We compare the performance of our algorithm with the state-of-the-art algorithms on the task of mean-square-error and ranking. Our proposed algorithm offers a comparable accuracy while suggesting a significant speedup in the dimensionality reduction time, with respect to the other candidate algorithms. Our proposal is simple, easy to implement, and therefore can be adopted in practice

    Mustererkennungsbasierte Verteidgung gegen gezielte Angriffe

    Get PDF
    The speed at which everything and everyone is being connected considerably outstrips the rate at which effective security mechanisms are introduced to protect them. This has created an opportunity for resourceful threat actors which have specialized in conducting low-volume persistent attacks through sophisticated techniques that are tailored to specific valuable targets. Consequently, traditional approaches are rendered ineffective against targeted attacks, creating an acute need for innovative defense mechanisms. This thesis aims at supporting the security practitioner in bridging this gap by introducing a holistic strategy against targeted attacks that addresses key challenges encountered during the phases of detection, analysis and response. The structure of this thesis is therefore aligned to these three phases, with each one of its central chapters taking on a particular problem and proposing a solution built on a strong foundation on pattern recognition and machine learning. In particular, we propose a detection approach that, in the absence of additional authentication mechanisms, allows to identify spear-phishing emails without relying on their content. Next, we introduce an analysis approach for malware triage based on the structural characterization of malicious code. Finally, we introduce MANTIS, an open-source platform for authoring, sharing and collecting threat intelligence, whose data model is based on an innovative unified representation for threat intelligence standards based on attributed graphs. As a whole, these ideas open new avenues for research on defense mechanisms and represent an attempt to counteract the imbalance between resourceful actors and society at large.In unserer heutigen Welt sind alle und alles miteinander vernetzt. Dies bietet mächtigen Angreifern die Möglichkeit, komplexe Verfahren zu entwickeln, die auf spezifische Ziele angepasst sind. Traditionelle Ansätze zur Bekämpfung solcher Angriffe werden damit ineffektiv, was die Entwicklung innovativer Methoden unabdingbar macht. Die vorliegende Dissertation verfolgt das Ziel, den Sicherheitsanalysten durch eine umfassende Strategie gegen gezielte Angriffe zu unterstützen. Diese Strategie beschäftigt sich mit den hauptsächlichen Herausforderungen in den drei Phasen der Erkennung und Analyse von sowie der Reaktion auf gezielte Angriffe. Der Aufbau dieser Arbeit orientiert sich daher an den genannten drei Phasen. In jedem Kapitel wird ein Problem aufgegriffen und eine entsprechende Lösung vorgeschlagen, die stark auf maschinellem Lernen und Mustererkennung basiert. Insbesondere schlagen wir einen Ansatz vor, der eine Identifizierung von Spear-Phishing-Emails ermöglicht, ohne ihren Inhalt zu betrachten. Anschliessend stellen wir einen Analyseansatz für Malware Triage vor, der auf der strukturierten Darstellung von Code basiert. Zum Schluss stellen wir MANTIS vor, eine Open-Source-Plattform für Authoring, Verteilung und Sammlung von Threat Intelligence, deren Datenmodell auf einer innovativen konsolidierten Graphen-Darstellung für Threat Intelligence Stardards basiert. Wir evaluieren unsere Ansätze in verschiedenen Experimenten, die ihren potentiellen Nutzen in echten Szenarien beweisen. Insgesamt bereiten diese Ideen neue Wege für die Forschung zu Abwehrmechanismen und erstreben, das Ungleichgewicht zwischen mächtigen Angreifern und der Gesellschaft zu minimieren
    • …
    corecore