286 research outputs found

    SIGNCRYPTION ANALYZE

    Get PDF
    The aim of this paper is to provide an overview for the research that has been done so far in signcryption area. The paper also presents the extensions for the signcryption scheme and discusses the security in signcryption. The main contribution to this paper represents the implementation of the signcryption algorithm with the examples provided.ElGamal, elliptic curves, encryption, identity-based, proxy-signcryption, public key, ring-signcryption, RSA, signcryption

    Certificateless KEM and Hybrid Signcryption Schemes Revisited

    Get PDF
    Often authentication and confidentiality are required as simultaneous key requirements in many cryptographic applications. The cryptographic primitive called signcryption effectively implements the same and while most of the public key based systems are appropriate for small messages, hybrid encryption (KEM-DEM) provides an efficient and practical way to securely communicate very large messages. Recently, Lippold et al. \cite{GCJ09} proposed a certificateless KEM in the standard model and the first certificateless hybrid signcryption scheme was proposed by Fagen Li et al. \cite{LST09}. The concept of certificateless hybrid signcryption has evolved by combining the ideas of signcryption based on tag-KEM and certificateless cryptography. In this paper, we show that \cite{GCJ09} is not Type-I CCA secure and \cite{LST09} is existentially forgeable. We also propose an improved certificateless hybrid signcryption scheme and formally prove the security of the improved scheme against both adaptive chosen ciphertext attack and existential forgery in the appropriate security models for certificateless hybrid signcryption

    Can you sign a quantum state?

    Get PDF
    Cryptography with quantum states exhibits a number of surprising and counterintuitive features. In a 2002 work, Barnum et al. argued informally that these strange features should imply that digital signatures for quantum states are impossible (Barnum et al., FOCS 2002). In this work, we perform the first rigorous study of the problem of signing quantum states. We first show that the intuition of Barnum et al. was correct, by proving an impossibility result which rules out even very weak forms of signing quantum states. Essentially, we show that any non-trivial combination of correctness and security requirements results in negligible security. This rules out all quantum signature schemes except those which simply measure the state and then sign the outcome using a classical scheme. In other words, only classical signature schemes exist. We then show a positive result: it is possible to sign quantum states, provided that they are also encrypted with the public key of the intended recipient. Following classical nomenclature, we call this notion quantum signcryption. Classically, signcryption is only interesting if it provides superior efficiency to simultaneous encryption and signing. Our results imply that, quantumly, it is far more interesting: by the laws of quantum mechanics, it is the only signing method available. We develop security definitions for quantum signcryption, ranging from a simple one-time two-user setting, to a chosen-ciphertext-secure many-time multi-user setting. We also give secure constructions based on post-quantum public-key primitives. Along the way, we show that a natural hybrid method of combining classical and quantum schemes can be used to "upgrade" a secure classical scheme to the fully-quantum setting, in a wide range of cryptographic settings including signcryption, authenticated encryption, and chosen-ciphertext security

    On the joint security of signature and encryption schemes under randomness reuse: efficiency and security amplification

    Get PDF
    Lecture Notes in Computer Science, 7341We extend the work of Bellare, Boldyreva and Staddon on the systematic analysis of randomness reuse to construct multi-recipient encryption schemes to the case where randomness is reused across different cryptographic primitives. We find that through the additional binding introduced through randomness reuse, one can actually obtain a security amplification with respect to the standard black-box compositions, and achieve a stronger level of security. We introduce stronger notions of security for encryption and signatures, where challenge messages can depend in a restricted way on the random coins used in encryption, and show that two variants of the KEM/DEM paradigm give rise to encryption schemes that meet this enhanced notion of security. We obtain the most efficient signcryption scheme to date that is secure against insider attackers without random oracles.(undefined

    Homomorphic signcryption with public plaintext-result checkability

    Get PDF
    Signcryption originally proposed by Zheng (CRYPTO \u27 97) is a useful cryptographic primitive that provides strong confidentiality and integrity guarantees. This article addresses the question whether it is possible to homomorphically compute arbitrary functions on signcrypted data. The answer is affirmative and a new cryptographic primitive, homomorphic signcryption (HSC) with public plaintext-result checkability is proposed that allows both to evaluate arbitrary functions over signcrypted data and makes it possible for anyone to publicly test whether a given ciphertext is the signcryption of the message under the key. Two notions of message privacy are also investigated: weak message privacy and message privacy depending on whether the original signcryptions used in the evaluation are disclosed or not. More precisely, the contributions are two-fold: (i) two different definitions of HSC with public plaintext-result checkability is provided for arbitrary functions in terms of syntax, unforgeability and message privacy depending on if the homomorphic computation is performed in a private or in a public evaluation setting, (ii) two HSC constructions are proposed: one for a public evaluation setting and another for a private evaluation setting and security is formally proved

    Lagrangian Recurrent Steganalysis and Hyper Elliptic Certificateless Signcryption for Secure Image Transmission

    Get PDF
    Present-day evolution in communication and information technology dispenses straightforward and effortless access to data, but the most noteworthy condition is the formation of secure communication. Numerous approaches were designed for safety communication. One of the crucial approaches is image steganography. Moreover, provisioning of information security services is arrived at via cryptosystems where cryptosystems make certain the secure messages transmission between the users in an untrustworthy circumstance.  The conventional method of providing encryption and signature is said to be first signing and then encryption, but both the computation and communication costs are found to be high. A certificateless signcryption mechanism is designed to transfer the medical data or images securely. This mechanism will minimize the storage and verification costs of public key certificates. The author of this article proposes a method named Lagrangian recurrent Steganalysis and Hyper Elliptic Certificateless Signcryption for transferring the medical data or images securely. In two sections the LRS-HECS method is split. They are medical image steganalysis and certificateless signcryption. First with the Chest X-Ray images obtained as input, a Codeword Correlated Lagrangian Recurrent Neural Network-based image steganography model is applied to generate steg images. Second, to transfer the medical images securely the steg images provided as input is designed a model named a Hyper Elliptic Curve-based Certificateless Signcryption. The issue of providing the integrity and validity of the transmitted medical images and receiver anonymity is addressed by the application of Hyper Elliptic Curve. Chest X-Ray pictures were used in experimental simulations, and the findings showed that the LRS-HECS approach had more advantages over existing state-of-the-art methods in terms of higher peak signal to noise ratio with data integrity and with reduced encryption time and transmission cost

    An ICMetrics Based Lightweight Security Architecture Using Lattice Signcryption

    Get PDF
    The advent of embedded systems has completely transformed the information landscape. With the explosive growth in the use of interactive real-time technologies, this internet landscape aims to support an even broader range of application domains. The large amount of data that is exchanged by these applications has made them an attractive target for attacks. Thus it is important to employ security mechanisms to protect these systems from attackers. A major challenge facing researchers is the resource constrained nature of these systems, which renders most of the traditional security mechanisms almost useless. In this paper we propose a lightweight ICmetrics based security architecture using lattices. The features of the proposed architecture fulfill both the requirements of security as well as energy efficiency. The proposed architecture provides authentication, confidentiality, non-repudiation and integrity of data. Using the identity information derived from ICmetrics of the device, we further construct a sign cryption scheme based on lattices that makes use of certificate less PKC to achieve the security requirements of the design. This scheme is targeted on resource constrained environments, and can be used widely in applications that require sufficient levels of security with limited resources

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin
    • …
    corecore