2,797 research outputs found

    Thirty-five common variants for coronary artery disease: the fruits of much collaborative labour

    Get PDF
    Coronary artery disease (CAD) is the leading cause of death worldwide. Affected individuals cluster in families in patterns that reflect the sharing of numerous susceptibility genes. Genome-wide and large-scale gene-centric genotyping studies that involve tens of thousands of cases and controls have now mapped common disease variants to 34 distinct loci. Some coronary disease common variants show allelic heterogeneity or copy number variation. Some of the loci include candidate genes that imply conventional or emerging risk factor-mediated mechanisms of disease pathogenesis. Quantitative trait loci associations with risk factors have been informative in Mendelian randomization studies as well as fine-mapping of causative variants. But, for most loci, plausible mechanistic links are uncertain or obscure at present but provide potentially novel directions for research into this disease's pathogenesis. The common variants explain ∼4% of inter-individual variation in disease risk and no more than 13% of the total heritability of coronary disease. Although many CAD genes are presently undiscovered, it is likely that larger collaborative genome-wide association studies will map further common/low-penetrance variants and hoped that low-frequency or rare high-penetrance variants will also be identified in medical resequencing experiments

    An Application of a Service-oriented System to Support ArrayAnnotation in Custom Chip Design for Epigenomic Analysis

    Get PDF
    We present the implementation of an application using caGrid, which is the service-oriented Grid software infrastructure of the NCI cancer Biomedical Informatics Grid (caBIGTM), to support design and analysis of custom microarray experiments in the study of epigenetic alterations in cancer. The design and execution of these experiments requires synthesis of information from multiple data types and datasets. In our implementation, each data source is implemented as a caGrid Data Service, and analytical resources are wrapped as caGrid Analytical Services. This service-based implementation has several advantages. A backend resource can be modified or upgraded, without needing to change other components in the application. A remote resource can be added easily, since resources are not required to be collected in a centralized infrastructure

    Advances in Genomic Discovery and Implications for Personalized Prevention and Medicine: Estonia as Example.

    Get PDF
    The current paradigm of personalized medicine envisages the use of genomic data to provide predictive information on the health course of an individual with the aim of prevention and individualized care. However, substantial efforts are required to realize the concept: enhanced genetic discoveries, translation into intervention strategies, and a systematic implementation in healthcare. Here we review how further genetic discoveries are improving personalized prediction and advance functional insights into the link between genetics and disease. In the second part we give our perspective on the way these advances in genomic research will transform the future of personalized prevention and medicine using Estonia as a primer

    Deep Functional Mapping For Predicting Cancer Outcome

    Get PDF
    The effective understanding of the biological behavior and prognosis of cancer subtypes is becoming very important in-patient administration. Cancer is a diverse disorder in which a significant medical progression and diagnosis for each subtype can be observed and characterized. Computer-aided diagnosis for early detection and diagnosis of many kinds of diseases has evolved in the last decade. In this research, we address challenges associated with multi-organ disease diagnosis and recommend numerous models for enhanced analysis. We concentrate on evaluating the Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Positron Emission Tomography (PET) for brain, lung, and breast scans to detect, segment, and classify types of cancer from biomedical images. Moreover, histopathological, and genomic classification of cancer prognosis has been considered for multi-organ disease diagnosis and biomarker recommendation. We considered multi-modal, multi-class classification during this study. We are proposing implementing deep learning techniques based on Convolutional Neural Network and Generative Adversarial Network. In our proposed research we plan to demonstrate ways to increase the performance of the disease diagnosis by focusing on a combined diagnosis of histology, image processing, and genomics. It has been observed that the combination of medical imaging and gene expression can effectively handle the cancer detection situation with a higher diagnostic rate rather than considering the individual disease diagnosis. This research puts forward a blockchain-based system that facilitates interpretations and enhancements pertaining to automated biomedical systems. In this scheme, a secured sharing of the biomedical images and gene expression has been established. To maintain the secured sharing of the biomedical contents in a distributed system or among the hospitals, a blockchain-based algorithm is considered that generates a secure sequence to identity a hash key. This adaptive feature enables the algorithm to use multiple data types and combines various biomedical images and text records. All data related to patients, including identity, pathological records are encrypted using private key cryptography based on blockchain architecture to maintain data privacy and secure sharing of the biomedical contents

    Improving knowledge management through the support of image examination and data annotation using DICOM structured reporting

    Get PDF
    [EN] An important effort has been invested on improving the image diagnosis process in different medical areas using information technologies. The field of medical imaging involves two main data types: medical imaging and reports. Developments based on the DICOM standard have demonstrated to be a convenient and widespread solution among the medical community. The main objective of this work is to design a Web application prototype that will be able to improve diagnosis and follow-on of breast cancer patients. It is based on TRENCADIS middleware, which provides a knowledge-oriented storage model composed by federated repositories of DICOM image studies and DICOM-SR medical reports. The full structure and contents of the diagnosis reports are used as metadata for indexing images. The TRENCADIS infrastructure takes full advantage of Grid technologies by deploying multi-resource grid services that enable multiple views (reports schemes) of the knowledge database. The paper presents a real deployment of such Web application prototype in the Dr. Peset Hospital providing radiologists with a tool to create, store and search diagnostic reports based on breast cancer explorations (mammography, magnetic resonance, ultrasound, pre-surgery biopsy and post-surgery biopsy), improving support for diagnostics decisions. A technical details for use cases (outlining enhanced multi-resource grid services communication and processing steps) and interactions between actors and the deployed prototype are described. As a result, information is more structured, the logic is clearer, network messages have been reduced and, in general, the system is more resistant to failures.The authors wish to thank the financial support received from The Spanish Ministry of Education and Science to develop the project "CodeCloud", with reference TIN2010-17804.Salavert Torres, J.; Segrelles Quilis, JD.; Blanquer Espert, I.; Hernández García, V. (2012). Improving knowledge management through the support of image examination and data annotation using DICOM structured reporting. Journal of Biomedical Informatics. 45(6):1066-1074. https://doi.org/10.1016/j.jbi.2012.07.004S1066107445

    Counselees’ Perspectives of Genomic Counseling Following Online Receipt of Multiple Actionable Complex Disease and Pharmacogenomic Results: a Qualitative Research Study

    Full text link
    Genomic applications raise multiple challenges including the optimization of genomic counseling (GC) services as part of the results delivery process. More information on patients’ motivations, preferences, and informational needs are essential to guide the development of new, more efficient practice delivery models that capitalize on the existing strengths of a limited genetic counseling workforce. Semi‐structured telephone interviews were conducted with a subset of counselees from the Coriell Personalized Medicine Collaborative following online receipt of multiple personalized genomic test reports. Participants previously had either in‐person GC (chronic disease cohort, n = 20; mean age 60 years) or telephone GC (community cohort, n = 31; mean age 46.8 years). Transcripts were analyzed using a Grounded Theory framework. Major themes that emerged from the interviews include 1) primary reasons for seeking GC were to clarify results, put results into perspective relative to other health‐related concerns, and to receive personalized recommendations; 2) there is need for a more participant driven approach in terms of mode of GC communication (in‐person, phone, video), and refining the counseling agenda pre‐session; and 3) there was strong interest in the option of follow up GC. By clarifying counselees’ expectations, views and desired outcomes, we have uncovered a need for a more participant‐driven GC model when potentially actionable genomic results are received online.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146805/1/jgc40738.pd

    DEVELOPMENT OF BIOINFORMATICS TOOLS AND ALGORITHMS FOR IDENTIFYING PATHWAY REGULATORS, INFERRING GENE REGULATORY RELATIONSHIPS AND VISUALIZING GENE EXPRESSION DATA

    Get PDF
    In the era of genetics and genomics, the advent of big data is transforming the field of biology into a data-intensive discipline. Novel computational algorithms and software tools are in demand to address the data analysis challenges in this growing field. This dissertation comprises the development of a novel algorithm, web-based data analysis tools, and a data visualization platform. Triple Gene Mutual Interaction (TGMI) algorithm, presented in Chapter 2 is an innovative approach to identify key regulatory transcription factors (TFs) that govern a particular biological pathway or a process through interaction among three genes in a triple gene block, which consists of a pair of pathway genes and a TF. The identification of key TFs controlling a biological pathway or a process allows biologists to understand the complex regulatory mechanisms in living organisms. TF-Miner, presented in Chapter 3, is a high-throughput gene expression data analysis web application that was developed by integrating two highly efficient algorithms; TF-cluster and TF-Finder. TF-Cluster can be used to obtain collaborative TFs that coordinately control a biological pathway or a process using genome-wide expression data. On the other hand, TF-Finder can identify regulatory TFs involved in or associated with a specific biological pathway or a process using Adaptive Sparse Canonical Correlation Analysis (ASCCA). Chapter 4 presents ExactSearch; a suffix tree based motif search algorithm, implemented in a web-based tool. This tool can identify the locations of a set of motif sequences in a set of target promoter sequences. ExactSearch also provides the functionality to search for a set of motif sequences in flanking regions from 50 plant genomes, which we have incorporated into the web tool. Chapter 5 presents STTM JBrowse; a web-based RNA-Seq data visualization system built using the JBrowse open source platform. STTM JBrowse is a unified repository to share/produce visualizations created from large RNA-Seq datasets generated from a variety of model and crop plants in which miRNAs were destroyed using Short Tandem Target Mimic (STTM) Technology

    2023 SPARC Book Of Abstracts

    Get PDF
    corecore