189 research outputs found

    Rational Proofs with Multiple Provers

    Full text link
    Interactive proofs (IP) model a world where a verifier delegates computation to an untrustworthy prover, verifying the prover's claims before accepting them. IP protocols have applications in areas such as verifiable computation outsourcing, computation delegation, cloud computing. In these applications, the verifier may pay the prover based on the quality of his work. Rational interactive proofs (RIP), introduced by Azar and Micali (2012), are an interactive-proof system with payments, in which the prover is rational rather than untrustworthy---he may lie, but only to increase his payment. Rational proofs leverage the provers' rationality to obtain simple and efficient protocols. Azar and Micali show that RIP=IP(=PSAPCE). They leave the question of whether multiple provers are more powerful than a single prover for rational and classical proofs as an open problem. In this paper, we introduce multi-prover rational interactive proofs (MRIP). Here, a verifier cross-checks the provers' answers with each other and pays them according to the messages exchanged. The provers are cooperative and maximize their total expected payment if and only if the verifier learns the correct answer to the problem. We further refine the model of MRIP to incorporate utility gap, which is the loss in payment suffered by provers who mislead the verifier to the wrong answer. We define the class of MRIP protocols with constant, noticeable and negligible utility gaps. We give tight characterization for all three MRIP classes. We show that under standard complexity-theoretic assumptions, MRIP is more powerful than both RIP and MIP ; and this is true even the utility gap is required to be constant. Furthermore the full power of each MRIP class can be achieved using only two provers and three rounds. (A preliminary version of this paper appeared at ITCS 2016. This is the full version that contains new results.)Comment: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science. ACM, 201

    Average-Case Complexity

    Full text link
    We survey the average-case complexity of problems in NP. We discuss various notions of good-on-average algorithms, and present completeness results due to Impagliazzo and Levin. Such completeness results establish the fact that if a certain specific (but somewhat artificial) NP problem is easy-on-average with respect to the uniform distribution, then all problems in NP are easy-on-average with respect to all samplable distributions. Applying the theory to natural distributional problems remain an outstanding open question. We review some natural distributional problems whose average-case complexity is of particular interest and that do not yet fit into this theory. A major open question whether the existence of hard-on-average problems in NP can be based on the P≠\neqNP assumption or on related worst-case assumptions. We review negative results showing that certain proof techniques cannot prove such a result. While the relation between worst-case and average-case complexity for general NP problems remains open, there has been progress in understanding the relation between different ``degrees'' of average-case complexity. We discuss some of these ``hardness amplification'' results

    Computational Complexity in Tile Self-Assembly

    Get PDF
    One of the most fundamental and well-studied problems in Tile Self-Assembly is the Unique Assembly Verification (UAV) problem. This algorithmic problem asks whether a given tile system uniquely assembles a specific assembly. The complexity of this problem in the 2-Handed Assembly Model (2HAM) at a constant temperature is a long-standing open problem since the model was introduced. Previously, only membership in the class coNP was known and that the problem is in P if the temperature is one (Ï„ = 1). The problem is known to be hard for many generalizations of the model, such as allowing one step into the third dimension or allowing the temperature of the system to be a variable, but the most fundamental version has remained open. In this Thesis I will cover verification problems in different models of self-assembly leading to the proof that the UAV problem in the 2HAM is hard even with a small constant temperature (Ï„ = 2), and finally answer the complexity of this problem (open since 2013). Further, this result proves that UAV in the staged self-assembly model is coNP-complete with a single bin and stage (open since 2007), and that UAV in the q-tile model is also coNP-complete (open since 2004). We reduce from Monotone Planar 3-SAT with Neighboring Variable Pairs, a special case of 3SAT recently proven to be NP-hard

    Algorithmic Cheap Talk

    Full text link
    The literature on strategic communication originated with the influential cheap talk model, which precedes the Bayesian persuasion model by three decades. This model describes an interaction between two agents: sender and receiver. The sender knows some state of the world which the receiver does not know, and tries to influence the receiver's action by communicating a cheap talk message to the receiver. This paper initiates the algorithmic study of cheap talk in a finite environment (i.e., a finite number of states and receiver's possible actions). We first prove that approximating the sender-optimal or the welfare-maximizing cheap talk equilibrium up to a certain additive constant or multiplicative factor is NP-hard. Fortunately, we identify three naturally-restricted cases that admit efficient algorithms for finding a sender-optimal equilibrium. These include a state-independent sender's utility structure, a constant number of states or a receiver having only two actions

    Polly Cracker, revisited

    Get PDF

    Pareto-Rational Verification

    Get PDF

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs
    • …
    corecore