673 research outputs found

    Power utility remote device communications using a Low Power Wide Area Network (LPWAN) based on the LoRa communications standard

    Get PDF
    Electricity distributors currently face heavily reduced operating and capital investment budgets in an effort to reduce household power bills. With the predicated high growth rate of the Internet of Things the following project has researched the possibility of sing this wireless technology for use in an electrical distribution network. The low cost and long range ability of LoRaWAN system provides numerous opportunities to provide distributors and customer’s information about power usage as well as provide access to once un‐financially viable communications. The project researches the LoRaWAN specification and where the technology currently sits in Australia. It will define possible uses for the technology in the electrical distribution industry and also examine the types of devices to establish a LoRaWAN network. Most of the objects and devices that will connect to the LoRaWAN network will only require low data rates/response times and small packet data. After conducting a literature review which details the LoRaWAN specification, LoRa modulation techniques and system architecture the project methodology then identified possible devices to use for the design and implementation of a LoRaWAN network. Theoretical analysis of coverage plots and expected range was completed which was then used for testing the live system. Lab testing of the LoRaWAN system was completed together with line of sight drive testing using various data rates in urban and rural environments. Data rates were chosen from some typical devices that may be used in the network such as smart meters. The system functioned in line of sight applications as specified with objects having a range of 20km. Lastly limitations and recommendations have been made for the system to be used in a real life application

    Efficient Key Management Schemes for Smart Grid

    Get PDF
    With the increasing digitization of different components of Smart Grid by incorporating smart(er) devices, there is an ongoing effort to deploy them for various applications. However, if these devices are compromised, they can reveal sensitive information from such systems. Therefore, securing them against cyber-attacks may represent the first step towards the protection of the critical infrastructure. Nevertheless, realization of the desirable security features such as confidentiality, integrity and authentication relies entirely on cryptographic keys that can be either symmetric or asymmetric. A major need, along with this, is to deal with managing these keys for a large number of devices in Smart Grid. While such key management can be easily addressed by transferring the existing protocols to Smart Grid domain, this is not an easy task, as one needs to deal with the limitations of the current communication infrastructures and resource-constrained devices in Smart Grid. In general, effective mechanisms for Smart Grid security must guarantee the security of the applications by managing (1) key revocation; and (2) key exchange. Moreover, such management should be provided without compromising the general performance of the Smart Grid applications and thus needs to incur minimal overhead to Smart Grid systems. This dissertation aims to fill this gap by proposing specialized key management techniques for resource and communication constrained Smart Grid environments. Specifically, motivated by the need of reducing the revocation management overhead, we first present a distributed public key revocation management scheme for Advanced Metering Infrastructure (AMI) by utilizing distributed hash trees (DHTs). The basic idea is to enable sharing of the burden among smart meters to reduce the overall overhead. Second, we propose another revocation management scheme by utilizing cryptographic accumulators, which reduces the space requirements for revocation information significantly. Finally, we turn our attention to symmetric key exchange problem and propose a 0-Round Trip Time (RTT) message exchange scheme to minimize the message exchanges. This scheme enables a lightweight yet secure symmetric key-exchange between field devices and the control center in Smart Gird by utilizing a dynamic hash chain mechanism. The evaluation of the proposed approaches show that they significantly out-perform existing conventional approaches

    A Novel Session Key Update Scheme for LoRaWAN

    Get PDF
    This paper proposes a novel Long-range Wide Area Network (LoRaWAN) session key updating scheme to enhance the security of LoRaWAN with cost-effective communication that provides a unique key for each communication session. The scheme consists of three sequential stages, i.e., initialization, keying material preparation, and key updating, on the basis of the truncated Photon-256 algorithm with updatable keying materials. These stages are structured by a set of novel communication protocols. To prove the uniqueness of the key, we validated its sequence bit randomness using the NIST 800-22 and ENT statistical test suites. The validation results show that the key passes all test parameters. Subsequently, the communication protocols were validated by using Scyther tools. We proved that these protocols ensure the security of the LoRaWAN key update scheme and guarantee that active interception does not occur. The analysis was performed by focusing on the security features of data confidentiality, integrity protection, mutual authentication, perfect forward secrecy, and replay attack resistance. Finally, a formal security analysis using GNY logic indicated that the overall security goals are achieved. The proposed scheme’s performance was evaluated in terms of computational cost, communication cost, and storage. The computational cost needed by the scheme is very small, indicating that there is no additional burden on the backend system. The communication cost requires less traffic than previous solutions, yet it offers more robust security for LoRaWAN by producing a new key in every communication session. The scheme needs insignificant additional storage that is considered negligible

    Integrated Satellite-terrestrial networks for IoT: LoRaWAN as a Flying Gateway

    Get PDF
    When the Internet of Things (IoT) was introduced, it causes an immense change in human life. Recently, different IoT emerging use cases, which will involve an even higher number of connected devices aimed at collecting and sending data with different purposes and over different application scenarios, such as smart city, smart factory, and smart agriculture. In some cases, the terrestrial infrastructure is not enough to guarantee the typical performance indicators due to its design and intrinsic limitations. Coverage is an example, where the terrestrial infrastructure is not able to cover certain areas such as remote and rural areas. Flying technologies, such as communication satellites and Unmanned Aerial Vehicles (UAVs), can contribute to overcome the limitations of the terrestrial infrastructure, offering wider coverage, higher resilience and availability, and improving user\u2019s Quality of Experience (QoE). IoT can benefit from the UAVs and satellite integration in many ways, also beyond the coverage extension and the increase of the available bandwidth that these objects can offer. This thesis proposes the integration of both IoT and UAVs to guarantee the increased coverage in hard to reach and out of coverage areas. Its core focus addresses the development of the IoT flying gateway and data mule and testing both approaches to show their feasibility. The first approach for the integration of IoT and UAV results in the implementing of LoRa flying gateway with the aim of increasing the IoT communication protocols\u2019 coverage area to reach remote and rural areas. This flying gateway examines the feasibility for extending the coverage in a remote area and transmitting the data to the IoT cloud in real-time. Moreover, it considers the presence of a satellite between the gateway and the final destination for areas with no Internet connectivity and communication means such as WiFi, Ethernet, 4G, or LTE. The experimental results have shown that deploying a LoRa gateway on board a flying drone is an ideal option for the extension of the IoT network coverage in rural and remote areas. The second approach for the integration of the aforementioned technologies is the deployment of IoT data mule concept for LoRa networks. The difference here is the storage of the data on board of the gateway and not transmitting the data to the IoT cloud in real time. The aim of this approach is to receive the data from the LoRa sensors installed in a remote area, store them in the gateway up until this flying gateway is connected to the Internet. The experimental results have shown the feasibility of our flying data mule in terms of signal quality, data delivery, power consumption and gateway status. The third approach considers the security aspect in LoRa networks. The possible physical attacks that can be performed on any LoRa device can be performed once its location is revealed. Position estimation was carried out using one of the LoRa signal features: RSSI. The values of RSSI are fed to the Trilateration localization algorithm to estimate the device\u2019s position. Different outdoor tests were done with and without the drone, and the results have shown that RSSI is a low cost option for position estimation that can result in a slight error due to different environmental conditions that affect the signal quality. In conclusion, by adopting both IoT technology and UAV, this thesis advances the development of flying LoRa gateway and LoRa data mule for the aim of increasing the coverage of LoRa networks to reach rural and remote areas. Moreover, this research could be considered as the first step towards the development of high quality and performance LoRa flying gateway to be tested and used in massive LoRa IoT networks in rural and remote areas

    3D IoT dystem for environmental and energy consumption monitoring system

    Get PDF
    Energy consumption in buildings depends on the local climate, building characteristics, and user behavior. Focusing on user interaction, this research work developed a novel approach to monitoring and interaction with local users by providing in situ context information through graphic descriptions of energy consumption and indoor/outdoor environment parameters: temperature, luminosity, and humidity, which are routinely measured in real-time and stored to identify consumption patterns and other savings actions. To involve local users, collected data are represented in 3D color representation using building 3d models. A simplified color scale depicts environmental comfort (low/comfortable/high temperature/relative humidity) and energy consumption (above/below usual patterns). We found that these indices induced user commitment and increased their engagement and participation in saving actions like turning off lights and better management of air conditioning systems.info:eu-repo/semantics/publishedVersio

    Smart energy meter based on a long-range wide-area network for a stand-alone photovoltaic system

    Get PDF
    Long-range wide-area network (LoRaWAN) has emerged as a key technology for Internet of Things (IoT) applications worldwide owing to its cost-effectiveness, robustness to interference, low power, licensed-free frequency band, and long-range connectivity, thanks to the adaptive data rate. In this contribution, an IoT-enabled smart energy meter based on LoRaWAN technology (SEM-LoRaWAN) is developed to measure the energy consumption for a photovoltaic (PV) system and send real-time data to the utility/consumers over the Internet for billing/monitoring purposes. The proposed SEM-LoRaWAN is implemented in a PV system to monitor related parameters (i.e., voltage, current, power, energy, light intensity, temperature, and humidity) and update this information to the cloud. A LoRa shield is attached to an Arduino microcontroller with several sensors to gather the required information and send it to a LoRaWAN gateway. We also propose an algorithm to compose data from multiple sensors as payloads and upload these data using the gateway to The Things Network (TTN). The AllThingsTalkMaker IoT server is integrated into the TTN to be accessed using Web/mobile application interfaces. System-level tests are conducted using a fabricated testbed and connected to a solar panel to prove the SEM-LoRaWAN effectiveness in terms of functionality, simplicity, reliability, and cost. The connectivity between the system and users is achieved using smartphones/laptops. Results demonstrate a smooth system operation with detailed and accurate measurements of electrical usage and PV environmental conditions in real-time

    Industrial networks and IIoT: Now and future trends

    Get PDF
    Connectivity is the one word summary for Industry 4.0 revolution. The importance of Internet of Things (IoT) and Industrial IoT (IIoT) have been increased dramatically with the rise of industrialization and industry 4.0. As new opportunities bring their own challenges, with the massive interconnected devices of the IIoT, cyber security of those networks and privacy of their users have become an important aspect. Specifically, intrusion detection for industrial networks (IIoT) has great importance. For instance, it is a key factor in improving the safe operation of the smart grid systems yet protecting the privacy of the consumers at the same time. In the same manner, data streaming is a valid option when the analysis is to be pushed from the cloud to the fog for industrial networks to provide agile response, since it brings the advantage of fast action on intrusion detection and also can buy time for intrusion mitigation. In order to dive deep in industrial networks, basic ground needs to be settled. Hence, this chapter serves in this manner, by presenting basic and emerging technologies along with ideas and discussions: First, an introduction of semiconductor evolution is provided along with the up-to-date hi-tech wired/wireless communication solutions for industrial networks. This is followed by a thorough representation of future trends in industrial environments. More importantly, enabling technologies for industrial networks is also presented. Finally, the chapter is concluded with a summary of the presentations along with future projections of IIoT networks

    Smart Metering in Infrastructure-Less Communication Environments and Applicability of LoRa Technology

    Get PDF
    Advanced-Metering-Infrastructure (AMI) is an integral part of Smart-Grids (SGs). It enables accurate consumer billing in presence of dynamic pricing, and improves efficiency and reliability of electricity distribution in presence of distributed generation. Value-added features of AMI such as diagnostics and maintenance service can identify the anomalous power consumption patterns of appliances at the end of their life cycle. Water and gas utility distribution networks in smart cities will incorporate AMI as an application of Internet-of-Things (IoT). The communication infrastructure plays a crucial role in enabling two-way communication between Smart-Meters (SMs) and the utility. AMI’s bi-directional communication facility supports precise modeling of load information and data management system facilitating demand-response applications to reduce energy wastage. Researchers have investigated the role of wireless technologies in Home-Area-Networks (HANs), Neighborhood-Area-Networks (NANs) and Wide-Area-Networks (WANs) in AMI. The arrival of new Low-Power-Wide-Area-Networks (LPWANs) technologies has opened up new technology integration possibilities in AMI. However, it is essential to understand the AMI architecture, envisioned application types, network requirements, features and limitations of existing technologies to determine a technology’s integration suitability in an application for smart metering technology. This chapter discusses LoRa for smart metering in infrastructure-less environments and the possible use of our multi-hop routing scheme
    corecore