6,959 research outputs found

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Online Personal Data Processing and EU Data Protection Reform. CEPS Task Force Report, April 2013

    Get PDF
    This report sheds light on the fundamental questions and underlying tensions between current policy objectives, compliance strategies and global trends in online personal data processing, assessing the existing and future framework in terms of effective regulation and public policy. Based on the discussions among the members of the CEPS Digital Forum and independent research carried out by the rapporteurs, policy conclusions are derived with the aim of making EU data protection policy more fit for purpose in today’s online technological context. This report constructively engages with the EU data protection framework, but does not provide a textual analysis of the EU data protection reform proposal as such

    Emerging Privacy Legislation in the International Landscape: Strategy and Analysis for Compliance

    Get PDF
    Big data is a part of our daily reality; consumers are constantly making decisions that reflect their personal preferences, resulting in valuable personal data. Facial recognition and other emerging technologies have raised privacy concerns due to the increased efficiency and scope which businesses and governments can use consumer data. With the European Union’s General Data Protection Regulation ushering in a new age of data privacy regulation, international jurisdictions have begun implementing comparable comprehensive legislation, affecting businesses globally. This Article examines the similarities between emerging U.S. state data privacy laws and the General Data Protection Regulation, with suggestions for businesses implicated by emerging legislation. In addition is a comparative analysis of proposed and implemented foreign data privacy laws that may impact private companies considering investment or expansion into foreign markets

    Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Get PDF
    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking

    Electronic security - risk mitigation in financial transactions : public policy issues

    Get PDF
    This paper builds on a previous series of papers (see Claessens, Glaessner, and Klingebiel, 2001, 2002) that identified electronic security as a key component to the delivery of electronic finance benefits. This paper and its technical annexes (available separately at http://www1.worldbank.org/finance/) identify and discuss seven key pillars necessary to fostering a secure electronic environment. Hence, it is intended for those formulating broad policies in the area of electronic security and those working with financial services providers (for example, executives and management). The detailed annexes of this paper are especially relevant for chief information and security officers responsible for establishing layered security. First, this paper provides definitions of electronic finance and electronic security and explains why these issues deserve attention. Next, it presents a picture of the burgeoning global electronic security industry. Then it develops a risk-management framework for understanding the risks and tradeoffs inherent in the electronic security infrastructure. It also provides examples of tradeoffs that may arise with respect to technological innovation, privacy, quality of service, and security in designing an electronic security policy framework. Finally, it outlines issues in seven interrelated areas that often need attention in building an adequate electronic security infrastructure. These are: 1) The legal framework and enforcement. 2) Electronic security of payment systems. 3) Supervision and prevention challenges. 4) The role of private insurance as an essential monitoring mechanism. 5) Certification, standards, and the role of the public and private sectors. 6) Improving the accuracy of information on electronic security incidents and creating better arrangements for sharing this information. 7) Improving overall education on these issues as a key to enhancing prevention.Knowledge Economy,Labor Policies,International Terrorism&Counterterrorism,Payment Systems&Infrastructure,Banks&Banking Reform,Education for the Knowledge Economy,Knowledge Economy,Banks&Banking Reform,International Terrorism&Counterterrorism,Governance Indicators

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    The third country problem under the GDPR: enhancing protection of data transfers with technology

    Get PDF
    The overall objective of the General Data Protection Regulation (GDPR)1 is two-fold: To contribute to the protection of privacy and personal data and to promote the free flow of personal data within the protected area2 through uniform regulations and homogenized interpretations of those regulations. If a controller or processor in the protected area (the exporter) transfers personal data to a country, region, or international organization outside the EEA, the exporter gets the advantage of the free flow of personal data to an area without homogenized data protection rules and interpretations. Under such circumstances, it is imperative to establish requirements that contribute to the initial objective of the GDPR, the protection of privacy and personal data. In EU data protection law, this requirement is known as the ‘essentially equivalent’ requirement.4 If personal data are to be transferred outside the protected area, the receiving country must have a level of personal data protection ‘essentially equivalent’ to the protected area
    • 

    corecore