273 research outputs found

    Secure and Precise Wireless Transmission for Random-Subcarrier-Selection-Based Directional Modulation Transmit Antenna Array

    Get PDF
    In this paper, a practical wireless transmission scheme is proposed to transmit confidential messages to the desired user securely and precisely by the joint use of multiple techniques, including artificial noise (AN) projection, phase alignment/beamforming, and random subcarrier selection (RSCS) based on orthogonal frequency division multiplexing (OFDM), and directional modulation (DM), namely RSCS-OFDM-DM. This RSCS-OFDM-DM scheme provides an extremely low-complexity structure for the desired receiver and makes the secure and precise wireless transmission realizable in practice. For illegal eavesdroppers, the receive power of confidential messages is so weak that their receivers cannot intercept these confidential messages successfully once it is corrupted by AN. In such a scheme, the design of phase alignment/beamforming vector and AN projection matrix depends intimately on the desired direction angle and distance. It is particularly noted that the use of RSCS leads to a significant outcome that the receive power of confidential messages mainly concentrates on the small neighboring region around the desired receiver and only small fraction of its power leaks out to the remaining large broad regions. This concept is called secure precise transmission. The probability density function of real-time receive signal-to-interference-and-noise ratio (SINR) is derived. Also, the average SINR and its tight upper bound are attained. The approximate closed-form expression for average secrecy rate is derived by analyzing the first-null positions of the SINR and clarifying the wiretap region. Simulation and analysis show that the proposed scheme actually can achieve a secure and precise wireless transmission of confidential messages in line-of-propagation channel, and the derived theoretical formula of average secrecy rate is verified to coincide with the exact results well for medium and large scale transmit antenna array or in the low and medium SNR regions

    UAV-enabled optimal position selection for secure and precise wireless transmission

    Full text link
    In this letter, two unmanned-aerial-vehicle (UAV) optimal position selection schemes are proposed. Based on the proposed schemes, the optimal UAV transmission positions for secure precise wireless transmission (SPWT) are given, where the maximum secrecy rate (SR) can be achieved without artificial noise (AN). In conventional SPWT schemes, the transmission location is not considered which impacts the SR a lot. The proposed schemes find the optimal transmission positions based on putting the eavesdropper at the null point. Thus, the received confidential message energy at the eavesdropper is zero, and the maximum SR achieves. Simulation results show that proposed schemes have improved the SR performance significantly
    • …
    corecore