2,392 research outputs found

    A Security-aware Approach to JXTA-Overlay Primitives

    Get PDF
    The JXTA-Overlay project is an effort to use JXTA technology to provide a generic set of functionalities that can be used by developers to deploy P2P applications. Since its design mainly focuses on issues such as scalability or overall performance, it does not take security into account. However, as P2P applications have evolved to fulfill more complex scenarios, security has become a very important aspect to take into account when evaluating a P2P framework. This work proposes a security extension specifically suited to JXTA-Overlay¿s idiosyncrasies, providing an acceptable solution to some of its current shortcomings.El proyecto JXTA-Overlay es un esfuerzo por utilizar la tecnología JXTA para proporcionar un conjunto genérico de funciones que pueden ser utilizadas por los desarrolladores para desplegar aplicaciones P2P. Aunque su diseño se centra principalmente en cuestiones como la escalabilidad y el rendimiento general, no tiene en cuenta la seguridad. Sin embargo, como las aplicaciones P2P se han desarrollado para cumplir con escenarios más complejos, la seguridad se ha convertido en un aspecto muy importante a tener en cuenta a la hora de evaluar un marco P2P. Este artículo propone una extensión de seguridad específicamente adaptada a la idiosincrasia de JXTA-Overlay, proporcionando una solución aceptable para algunas de sus deficiencias actuales.El projecte JXTA-Overlay és un esforç per utilitzar la tecnologia JXTA per proporcionar un conjunt genèric de funcions que poden ser utilitzades pels desenvolupadors per desplegar aplicacions P2P. Tot i que el seu disseny se centra principalment en qüestions com ara la escalabilitat i el rendiment general, no té en compte la seguretat. No obstant això, com que les aplicacions P2P s'han desenvolupat per complir amb escenaris més complexos, la seguretat s'ha convertit en un aspecte molt important a tenir en compte a l'hora d'avaluar un marc P2P. Aquest article proposa una extensió de seguretat específicament adaptada a la idiosincràsia de JXTA-Overlay, proporcionant una solució acceptable per a algunes de les seves deficiències actuals

    An Efficient Secure Group Authenticated Key Agreement Protocol for Wireless Sensor Networks in IoT Environment

    Get PDF
    Internet of Things(IoT) consist of interconnected devices for transmitting and receiving the data over the network. Key management is important for data confidentiality while transmitting in an open network. Even though several key management techniques are feasible to use, still obtaining a key management technique is a challenge with respect to energy and computational cost. The main intention of this work is to discover and overcome the design issues of the existing system and implement a lightweight and secure solution for that issue. The existing system has a fatal security flaw that leads to the unavailability of a complete system which is considered a huge problem in Internet of things. To overcome this issue, an authenticated key management protocol is proposed which deals with the problem of single point of failure and maintains the security properties of the existing system. An authenticated scheme is provided using elliptic curve and hash functions. This scheme also provides client addition, deletion and key freshness. Security analysis and computation complexity has been also discussed. We experimented proposed algorithm and tested with Scyther verification tool. The design overcomes the issues of an existing system by utilizing our scheme in peer to peer network. This network resolves the issue of a single point of failure (SPOF) by distributing the resources and services to the multiple nodes in the network. It will dissolve the problem of SPOF and will increase the reliability and scalability of the IoT system

    Secure web services using two-way authentication and three-party key establishment for service delivery

    Get PDF
    With the advance of web technologies, a large quantity of transactions have been processed through web services. Service Provider needs encryption via public communication channel in order that web services can be delivered to Service Requester. Such encryptions can be realized using secure session keys. Traditional approaches which can enable such transactions are based on peer-to-peer architecture or hierarchical group architecture. The former method resides on two-party communications while the latter resides on hierarchical group communications. In this paper, we will use three-party key establishment to enable secure communications for Service Requester and Service Provider. The proposed protocol supports Service Requester, Service Broker, and Service Provider with a shared secret key established among them. Compared with peer-to-peer architecture and hierarchical group architecture, our method aims at reducing communication and computation overheads

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Authentication Based on Blockchain

    Get PDF
    Across past decade online services have enabled individuals and organizations to perform different types of transactions such as banking, government transactions etc. The online services have also enabled more developments of applications, at cheap cost with elastic and scalable, fault tolerant system. These online services are offered by services providers which are use authentication, authorization and accounting framework based on client-server model. Though this model has been used over decades, study shows it is vulnerable to different hacks and it is also inconvenient to use for the end users. In addition, the services provider has total control over user data which they can monitor, trace, leak and even modify at their will. Thus, the user data ownership, digital identity and use of online services has raised privacy and security concern for the users. In this thesis, Blockchain and the e-pass application are studied and alternative model for authentication, authorization and accounting is proposed based on Ethereum Blockchain. Furthermore, a prototype is developed which enables users to consume online services by authenticating, authorizing, and accounting with a single identity without sharing any private user data with the services provider center server. Experiments are run with the prototype to verify that it works as expected. Measurements are done to assess the feasibility and scalability of the solution. In the final part of the thesis, pros and cons of the proposed solution are discussed and perspectives for further research are sketched

    Factors Impacting Key Management Effectiveness in Secured Wireless Networks

    Get PDF
    The use of a Public Key Infrastructure (PKI) offers a cryptographic solution that can overcome many, but not all, of the MANET security problems. One of the most critical aspects of a PKI system is how well it implements Key Management. Key Management deals with key generation, key storage, key distribution, key updating, key revocation, and certificate service in accordance with security policies over the lifecycle of the cryptography. The approach supported by traditional PKI works well in fixed wired networks, but it may not appropriate for MANET due to the lack of fixed infrastructure to support the PKI. This research seeks to identify best practices in securing networks which may be applied to new network architectures

    Collaborative Authentication for 6G Networks: An Edge Intelligence based Autonomous Approach

    Full text link
    The conventional device authentication of wireless networks usually relies on a security server and centralized process, leading to long latency and risk of single-point of failure. While these challenges might be mitigated by collaborative authentication schemes, their performance remains limited by the rigidity of data collection and aggregated result. They also tend to ignore attacker localization in the collaborative authentication process. To overcome these challenges, a novel collaborative authentication scheme is proposed, where multiple edge devices act as cooperative peers to assist the service provider in distributively authenticating its users by estimating their received signal strength indicator (RSSI) and mobility trajectory (TRA). More explicitly, a distributed learning-based collaborative authentication algorithm is conceived, where the cooperative peers update their authentication models locally, thus the network congestion and response time remain low. Moreover, a situation-aware secure group update algorithm is proposed for autonomously refreshing the set of cooperative peers in the dynamic environment. We also develop an algorithm for localizing a malicious user by the cooperative peers once it is identified. The simulation results demonstrate that the proposed scheme is eminently suitable for both indoor and outdoor communication scenarios, and outperforms some existing benchmark schemes
    corecore