3,038 research outputs found

    Survey Paper on CP-ABE cloud computing

    Full text link
    In attribute based encryption (ABE) scheme, attributes plays a very important role. Attribute –based encryption provides privacy protection for the users by a set of attributes. Now a days as cloud is most widely used in mostly all fields so there is need of keeping data more secure and confidential which is outsourced on the cloud. Security of the data in cloud database server is the key area of concern in the acceptance of cloud. It is required very high degree of privacy and authentication. In existing system used hierarchical authorization structure to reduce the burden and risk of a single authority .this paper proposes a hierarchical attribute based encryption which directly provides attribute value by user as well as data stored in different types of media

    Ciphertext Policy Attribute based Homomorphic Encryption (CP-ABHERLWE): a fine-grained access control on outsourced cloud data computation

    Get PDF
    Recently, homomorphic encryption is becoming one of the holy grail in modern cryptography research and serve as a promising tools to protect outsourced data solutions on cloud service providers. However, most of the existing homomorphic encryption schemes are designed to achieve Fully Homomorphic Encryption that aimed to support arbitrary computations for only single-data ownership scenario. To bridge these gaps, this paper proposed a non-circuit based Ciphertext Policy-Attribute Based Homomorphic Encryption (CP-ABHER-LWE) scheme to support outsourced cloud data computations with a fine-grained access control under the multi-user scenario. First, this paper incorporates Attribute Based Encryption (ABE) scheme into homomorphic encryption scheme in order to provide a fine grained access control on encrypted data computation and storage. Then, the proposed CP-ABHER-LWE scheme is further extended into non-circuit based approach in order to increase the practical efficiency between enterprise and cloud service providers. The result shows that the non-circuit based CP-ABHER-LWE scheme has greatly reduced the computation time and ciphertext size as compared to circuit based approach. Subsequently, the proposed CP-ABHER-LWE scheme was proven secure under a selective-set model with the hardness of Decision Ring-LWEd,q,ई problem

    A secure data outsourcing scheme based on Asmuth – Bloom secret sharing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Data outsourcing is an emerging paradigm for data management in which a database is provided as a service by third-party service providers. One of the major benefits of offering database as a service is to provide organisations, which are unable to purchase expensive hardware and software to host their databases, with efficient data storage accessible online at a cheap rate. Despite that, several issues of data confidentiality, integrity, availability and efficient indexing of users’ queries at the server side have to be addressed in the data outsourcing paradigm. Service providers have to guarantee that their clients’ data are secured against internal (insider) and external attacks. This paper briefly analyses the existing indexing schemes in data outsourcing and highlights their advantages and disadvantages. Then, this paper proposes a secure data outsourcing scheme based on Asmuth–Bloom secret sharing which tries to address the issues in data outsourcing such as data confidentiality, availability and order preservation for efficient indexing

    ESPOONERBAC_{{ERBAC}}: Enforcing Security Policies In Outsourced Environments

    Full text link
    Data outsourcing is a growing business model offering services to individuals and enterprises for processing and storing a huge amount of data. It is not only economical but also promises higher availability, scalability, and more effective quality of service than in-house solutions. Despite all its benefits, data outsourcing raises serious security concerns for preserving data confidentiality. There are solutions for preserving confidentiality of data while supporting search on the data stored in outsourced environments. However, such solutions do not support access policies to regulate access to a particular subset of the stored data. For complex user management, large enterprises employ Role-Based Access Controls (RBAC) models for making access decisions based on the role in which a user is active in. However, RBAC models cannot be deployed in outsourced environments as they rely on trusted infrastructure in order to regulate access to the data. The deployment of RBAC models may reveal private information about sensitive data they aim to protect. In this paper, we aim at filling this gap by proposing \textbf{ESPOONERBAC\mathit{ESPOON_{ERBAC}}} for enforcing RBAC policies in outsourced environments. ESPOONERBAC\mathit{ESPOON_{ERBAC}} enforces RBAC policies in an encrypted manner where a curious service provider may learn a very limited information about RBAC policies. We have implemented ESPOONERBAC\mathit{ESPOON_{ERBAC}} and provided its performance evaluation showing a limited overhead, thus confirming viability of our approach.Comment: The final version of this paper has been accepted for publication in Elsevier Computers & Security 2013. arXiv admin note: text overlap with arXiv:1306.482
    • …
    corecore