248 research outputs found

    Towards Principled Dynamic Analysis on Android

    Get PDF
    The vast amount of information and services accessible through mobile handsets running the Android operating system has led to the tight integration of such devices into our daily routines. However, their capability to capture and operate upon user data provides an unprecedented insight into our private lives that needs to be properly protected, which demands for comprehensive analysis and thorough testing. While dynamic analysis has been applied to these problems in the past, the corresponding literature consists of scattered work that often specializes on sub-problems and keeps on re-inventing the wheel, thus lacking a structured approach. To overcome this unsatisfactory situation, this dissertation introduces two major systems that advance the state-of-the-art of dynamically analyzing the Android platform. First, we introduce a novel, fine-grained and non-intrusive compiler-based instrumentation framework that allows for precise and high-performance modification of Android apps and system components. Second, we present a unifying dynamic analysis platform with a special focus on Android’s middleware in order to overcome the common challenges we identified from related work. Together, these two systems allow for a more principled approach for dynamic analysis on Android that enables comparability and composability of both existing and future work.Die enorme Menge an Informationen und Diensten, die durch mobile Endgeräte mit dem Android Betriebssystem zugänglich gemacht werden, hat zu einer verstärkten Einbindung dieser Geräte in unseren Alltag geführt. Gleichzeitig erlauben die dabei verarbeiteten Benutzerdaten einen beispiellosen Einblick in unser Privatleben. Diese Informationen müssen adäquat geschützt werden, was umfassender Analysen und gründlicher Prüfung bedarf. Dynamische Analysetechniken, die in der Vergangenheit hier bereits angewandt wurden, fokussieren sich oftmals auf Teilprobleme und reimplementieren regelmäßig bereits existierende Komponenten statt einen strukturierten Ansatz zu verfolgen. Zur Überwindung dieser unbefriedigenden Situation stellt diese Dissertation zwei Systeme vor, die den Stand der Technik dynamischer Analyse der Android Plattform erweitern. Zunächst präsentieren wir ein compilerbasiertes, feingranulares und nur geringfügig eingreifendes Instrumentierungsframework für präzises und performantes Modifizieren von Android Apps und Systemkomponenten. Anschließend führen wir eine auf die Android Middleware spezialisierte Plattform zur Vereinheitlichung von dynamischer Analyse ein, um die aus existierenden Arbeiten extrahierten, gemeinsamen Herausforderungen in diesem Gebiet zu überwinden. Zusammen erlauben diese beiden Systeme einen prinzipienorientierten Ansatz zur dynamischen Analyse, welcher den Vergleich und die Zusammenführung existierender und zukünftiger Arbeiten ermöglicht

    I know what leaked in your pocket: uncovering privacy leaks on Android Apps with Static Taint Analysis

    Get PDF
    Android applications may leak privacy data carelessly or maliciously. In this work we perform inter-component data-flow analysis to detect privacy leaks between components of Android applications. Unlike all current approaches, our tool, called IccTA, propagates the context between the components, which improves the precision of the analysis. IccTA outperforms all other available tools by reaching a precision of 95.0% and a recall of 82.6% on DroidBench. Our approach detects 147 inter-component based privacy leaks in 14 applications in a set of 3000 real-world applications with a precision of 88.4%. With the help of ApkCombiner, our approach is able to detect inter-app based privacy leaks

    Compiler Design of a Policy Specification Language for Conditional Gradual Release

    Get PDF
    Securing the confidentiality and integrity of information manipulated by computer software is an old yet increasingly important problem. Current software permission systems present on Android or iOS provide inadequate support for developing applications with secure information flow policies. To be useful, information flow control policies need to specify declassifications and the conditions under which declassification must occur. Having these declassifications scattered all over the program makes policies hard to find, which makes auditing difficult. To overcome these challenges, a policy specification language, \u27Evidently\u27 is discussed that allows one to specify information flow control policies separately from the program and which supports conditional gradual releases that can be automatically enforced. I discuss the Evidently grammar and modular semantics in detail. Finally, I discuss the implementational details of Evidently compiler within the Xtext language development environment and the implementation\u27s enforcement of policies

    Efficient and Expressive Bytecode-Level Instrumentation for Java Programs

    Get PDF
    We present an efficient and expressive tool for the instrumentation of Java programs at the bytecodelevel. BISM (Bytecode-Level Instrumentation for Software Monitoring) is a lightweight Java bytecode instrumentation tool that features an expressive high-level control-flow-aware instrumentation language. The language is inspired by the aspect-oriented programming paradigm in modularizing instrumentation into separate transformers, that encapsulate joinpoint selection and advice inlining. BISM allows capturing joinpoints ranging from bytecode instructions to methods execution and provides comprehensive static and dynamic context information. It runs in two instrumentation modes: build-time and load-time. BISM also provides a mechanism to compose transformers and automatically detect their collision in the base program. Transformers in a composition can control the visibility of their advice and other instructions from the base program. We show several example applications for BISM and demonstrate its effectiveness using three experiments: a security scenario, a financial transaction system, and a general runtime verification case. The results show that BISM instrumentation incurs low runtime and memory overheads

    07091 Abstracts Collection -- Mobility, Ubiquity and Security

    Get PDF
    From 25.02.2007 to 02.03.2007, the Dagstuhl Seminar 07091 ``Mobility, Ubiquity and Security\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Benzo: Reflective Glue for Low-level Programming

    Get PDF
    International audienceThe goal of high-level low-level programming is to bring the abstraction capabilities of high-level languages to the system programming domain, such as virtual machines (VMs) and language runtimes. However, existing solutions are bound to compilation time and expose limited possibilities to be changed at runtime and from language-side. They do not fit well with fully reflective languages and environments. We propose Benzo1, a lightweight framework for high- level low-level programming that allows developers to generate and execute at runtime low-level code (assembly). It promotes the implementation, and dynamic modification, of system components with high-level language tools outperforming existing dynamic solutions. Since Benzo is a general framework we choose three applications that cover an important range of the spectrum of system programming for validating the infrastructure: a For- eign Function Interface (FFI), primitives instrumentation and a just-in-time bytecode compiler (JIT). With Benzo we show that these typical VM-level components are feasible as reflective language-side implementations. Due to its unique combination of high-level reflection and low-level programming, Benzo shows better performance for these three applications than the comparable high-level implementations

    Quantifying and Predicting the Influence of Execution Platform on Software Component Performance

    Get PDF
    The performance of software components depends on several factors, including the execution platform on which the software components run. To simplify cross-platform performance prediction in relocation and sizing scenarios, a novel approach is introduced in this thesis which separates the application performance profile from the platform performance profile. The approach is evaluated using transparent instrumentation of Java applications and with automated benchmarks for Java Virtual Machines
    • …
    corecore