588 research outputs found

    Chameleon: a Blind Double Trapdoor Hash Function for Securing AMI Data Aggregation

    Get PDF
    Data aggregation is an integral part of Advanced Metering Infrastructure (AMI) deployment that is implemented by the concentrator. Data aggregation reduces the number of transmissions, thereby reducing communication costs and increasing the bandwidth utilization of AMI. However, the concentrator poses a great risk of being tampered with, leading to erroneous bills and possible consumer disputes. In this paper, we propose an end-to-end integrity protocol using elliptic curve based chameleon hashing to provide data integrity and authenticity. The concentrator generates and sends a chameleon hash value of the aggregated readings to the Meter Data Management System (MDMS) for verification, while the smart meter with the trapdoor key computes and sends a commitment value to the MDMS so that the resulting chameleon hash value calculated by the MDMS is equivalent to the previous hash value sent by the concentrator. By comparing the two hash values, the MDMS can validate the integrity and authenticity of the data sent by the concentrator. Compared with the discrete logarithm implementation, the ECC implementation reduces the computational cost of MDMS, concentrator and smart meter by approximately 36.8%, 80%, and 99% respectively. We also demonstrate the security soundness of our protocol through informal security analysis

    Securing Smart Grid In-Network Aggregation through False Data Detection

    Get PDF
    Existing prevention-based secure in-network data aggregation schemes for the smart grids cannot e ectively detect accidental errors and falsified data injected by malfunctioning or compromised meters. In this work, we develop a light-weight anomaly detector based on kernel density estimator to locate the smart meter from which the falsified data is injected. To reduce the overhead at the collector, we design a dynamic grouping scheme, which divides meters into multiple interconnected groups and distributes the verification and detection load among the root of the groups. To enable outlier detection at the root of the groups, we also design a novel data re-encryption scheme based on bilinear mapping so that data previously encrypted using the aggregation key is transformed in a form that can be recovered by the outlier detectors using a temporary re-encryption key. Therefore, our proposed detection scheme is compatible with existing in-network aggregation approaches based on additive homomorphic encryption. We analyze the security and eÿciency of our scheme in terms of storage, computation and communication overhead, and evaluate the performance of our outlier detector with experiments using real-world smart meter consumption data. The results show that the performance of the light-weight detector yield high precision and recall

    Efficient and Privacy-Preserving Data Aggregation and Dynamic Billing in Smart Grid Metering Networks

    Get PDF
    The smart grid enables convenient data collection between smart meters and operation centers via data concentrators. However, it presents security and privacy issues for the customer. For instance, a malicious data concentrator cannot only use consumption data for malicious purposes but also can reveal life patterns of the customers. Recently, several methods in different groups (e.g., secure data aggregation, etc.) have been proposed to collect the consumption usage in a privacy-preserving manner. Nevertheless, most of the schemes either introduce computational complexities in data aggregation or fail to support privacy-preserving billing against the internal adversaries (e.g., malicious data concentrators). In this paper, we propose an efficient and privacy-preserving data aggregation scheme that supports dynamic billing and provides security against internal adversaries in the smart grid. The proposed scheme actively includes the customer in the registration process, leading to end-to-end secure data aggregation, together with accurate and dynamic billing offering privacy protection. Compared with the related work, the scheme provides a balanced trade-off between security and efficacy (i.e., low communication and computation overhead while providing robust security)

    Lightweight Data Aggregation Scheme Against Internal Attackers in Smart Grid Using Elliptic Curve Cryptography

    Get PDF
    Recent advances of Internet and microelectronics technologies have led to the concept of smart grid which has been a widespread concern for industry, governments, and academia. The openness of communications in the smart grid environment makes the system vulnerable to different types of attacks. The implementation of secure communication and the protection of consumers’ privacy have become challenging issues. The data aggregation scheme is an important technique for preserving consumers’ privacy because it can stop the leakage of a specific consumer’s data. To satisfy the security requirements of practical applications, a lot of data aggregation schemes were presented over the last several years. However, most of them suffer from security weaknesses or have poor performances. To reduce computation cost and achieve better security, we construct a lightweight data aggregation scheme against internal attackers in the smart grid environment using Elliptic Curve Cryptography (ECC). Security analysis of our proposed approach shows that it is provably secure and can provide confidentiality, authentication, and integrity. Performance analysis of the proposed scheme demonstrates that both computation and communication costs of the proposed scheme are much lower than the three previous schemes. As a result of these aforementioned benefits, the proposed lightweight data aggregation scheme is more practical for deployment in the smart grid environment

    EV integration in smart grids through interoperability solutions

    Get PDF
    The high total cost of ownership and the uncertainties surrounding battery reliability are still the main barriers for electric vehicle (EV) market take off in Europe. Storage evolution, leading to both price reduction and performance improvement, is a huge technical challenge in the medium-long term. In the meantime, new business models and market niche developments might play a facilitator role for EV deployment by tackling the economic gap between conventional ICE and electromobility (e-mobility) solutions. Based on the analysis of the state of the art, this paper considers new business model aspects, but with an especial focus on smart grid integration and interoperability. Available solutions for electro-mobility are sketched out and presented according to the Smart Grid Architecture Model (SGAM), giving hints on regulation, business, services, components and communication and information. The smart grid integration of EVs is highly dependent on the interoperability of e-mobility solutions with electric network management procedures. In addition, it is expected that the interoperability between different e-mobility developments results in lower prices and extended services availability for final users. This makes this subject to be of great importance at international level. To achieve this, it is necessary to be able to assess interoperability, not only at the level of physical systems but at all domains, including stakeholder interactions in the frame of a broad diversity of services, business models and regulatory schemes. COTEVOS project aim is to help tackle this challenge.EC FP
    • …
    corecore