488 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Safeguarding Massive MIMO Aided HetNets Using Physical Layer Security

    Full text link
    This paper exploits the potential of physical layer security in massive multiple-input multiple-output (MIMO) aided two-tier heterogeneous networks (HetNets). We focus on the downlink secure transmission in the presence of multiple eavesdroppers. We first address the impact of massive MIMO on the maximum receive power based user association. We then derive the tractable upper bound expressions for the secrecy outage probability of a HetNets user.We show that the implementation of massive MIMO significantly improves the secrecy performance, which indicates that physical layer security could be a promising solution for safeguarding massive MIMO HetNets. Furthermore, we show that the secrecy outage probability of HetNets user first degrades and then improves with increasing the density of PBSs

    Secure Massive MIMO Communication with Low-resolution DACs

    Full text link
    In this paper, we investigate secure transmission in a massive multiple-input multiple-output (MIMO) system adopting low-resolution digital-to-analog converters (DACs). Artificial noise (AN) is deliberately transmitted simultaneously with the confidential signals to degrade the eavesdropper's channel quality. By applying the Bussgang theorem, a DAC quantization model is developed which facilitates the analysis of the asymptotic achievable secrecy rate. Interestingly, for a fixed power allocation factor Ï•\phi, low-resolution DACs typically result in a secrecy rate loss, but in certain cases they provide superior performance, e.g., at low signal-to-noise ratio (SNR). Specifically, we derive a closed-form SNR threshold which determines whether low-resolution or high-resolution DACs are preferable for improving the secrecy rate. Furthermore, a closed-form expression for the optimal Ï•\phi is derived. With AN generated in the null-space of the user channel and the optimal Ï•\phi, low-resolution DACs inevitably cause secrecy rate loss. On the other hand, for random AN with the optimal Ï•\phi, the secrecy rate is hardly affected by the DAC resolution because the negative impact of the quantization noise can be compensated for by reducing the AN power. All the derived analytical results are verified by numerical simulations.Comment: 14 pages, 10 figure
    • …
    corecore