20,101 research outputs found

    Unobtrusive Location-Based Access Control Utilizing Existing IEEE 802.11 Infrastructure

    Get PDF
    Mobile devices can sense several types of signals over the air using different radio frequency technologies (e.g., Wi-Fi, Bluetooth, cellular signals, etc.). Furthermore, mobile devices receive broadcast messages from transmitting entities (e.g., network access points, cellular phone towers, etc.) and can measure the received signal strength from these entities. Broadcast messages carry the information needed in case a mobile device chooses to establish communication. We believe that these signals can be utilized in the context of access control, specifically because they could provide an indication of the location of a user\u27s device. Such a “location proof” could then be used to provide access to location-based services. In this research, we propose a location-based access control (LBAC) system that utilizes tokens broadcasted by IEEE 802.11 (Wi-Fi) access points as a location proof for clients requesting access to a resource. This work differs from existing research in that it allows the verification of a client’s location continuously and unobtrusively, utilizing existing IEEE 802.11 infrastructure (which makes it easily deployable), and resulting in a secure and convenient LBAC system. This work illustrates an important application of location-based services (LBS): security. LBAC systems manage access to resources by utilizing the location of clients. The proposed LBAC system attempts to take advantage of the current IEEE 802.11 infrastructure, making it directly applicable to an existing ubiquitous system infrastructure

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    A-VIP: Anonymous Verification and Inference of Positions in Vehicular Networks

    Get PDF
    MiniconferenceInternational audienceKnowledge of the location of vehicles and tracking of the routes they follow are a requirement for a number of applications, including e-tolling and liability attribution in case of accidents. However, public disclosure of the identity and position of drivers jeopardizes user privacy, and securing the tracking through asymmetric cryptography may have an exceedingly high computational cost. Additionally, there is currently no way an authority can verify the correctness of the position information provided by a potentially misbehaving car. In this paper, we address all of the issues above by introducing A-VIP, a lightweight framework for privacy preserving and tracking of vehicles. A-VIP leverages anonymous position beacons from vehicles, and the cooperation of nearby cars collecting and reporting the beacons they hear. Such information allows an authority to verify the locations announced by vehicles, or to infer the actual ones if needed. We assess the effectiveness of A-VIP through both realistic simulation and testbed implementation results, analyzing also its resilience to adversarial attacks

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio
    corecore