9,207 research outputs found

    Sisäpaikannus: Teknologiat ja käyttötapaukset vähittäiskaupan alalla

    Get PDF
    Indoor positioning systems (IPS) are required in buildings to offer the possibility to position people and assets indoors, as the widely utilized GPS signal cannot penetrate through walls. IPSs are already implemented in many indoor environments. Several indoor positioning technologies exist, but none of them is clearly a dominant technology over the others. Consequently, this study identifies the different kinds of indoor positioning technologies and methods as well as the use cases they are used in. For this purpose, six companies using or developing indoor positioning systems were interviewed. The interviews were held in person, and they were 60-minute long semi-structured interviews with a set of questions in Appendix 1. In addition, two companies interested in indoor positioning, and that are working with retail were interviewed in 30-minute semi-structured interviews with questions in Appendix 2. Indoor positioning is employed in the interviewed companies to help users to navigate in public spaces; raise employee satisfaction in an office; improve customer service and satisfaction in malls, stores, and restaurants and develop processes and safety in warehouses. These different use cases have distinctive specifications and needs for indoor positioning, and thus, there is not a simple solution as to which technology is the right choice for a particular use case. Nevertheless, three points affecting the choice of indoor positioning technology were concluded from the interviews: 1) the accuracy of a technology, 2) whether the positioning happens through a tag or a mobile device, and 3) if positioning infrastructure, such as anchor nodes, can be installed in the building. Finally, based on the interviews, a suggested model for an indoor positioning system for a retail company is presented in a form of a Value Network Configuration.Sisäpaikannusjärjestelmiä tarvitaan rakennuksissa, jotta ihmisiä ja tavaroita voidaan paikantaa sisätiloissa, sillä ulkona yleisesti käytetty GPS signaali ei pysty läpäisemään rakennusten seiniä. Vaikka sisäpaikannusta käytetäänkin jo useissa eri sisätiloissa ja useita eri sisäpaikannusteknologioita on olemassa, mikään niistä ei ole selvästi hallitseva teknologia. Tässä tutkimuksessa tunnistetaan eri sisäpaikannusteknologiat ja –tekniikat kuten myös niitä hyödyntävät käyttötapaukset. Tätä varten haastateltiin kuutta eri yritystä, jotka käyttävät tai tarjoavat sisäpaikannusjärjestelmiä. Haastattelut olivat puolistrukturoituja, kestivät 60 minuuttia ja ne pidettiin kasvotusten. Lisäksi haastateltiin 30 minuutin puolistrukturoiduissa haastatteluissa kahta kaupan alaan liittyvää yritystä, jotka ovat kiinnostuneita sisäpaikannuksesta. Haastattelukysymykset ovat liitteissä 1 ja 2. Sisäpaikannusta käytetään haastatelluissa yrityksissä käyttäjien navigoinnin helpottamiseksi julkisissa tiloissa, työntekijöiden tyytyväisyyden kasvattamiseen toimistossa, asiakaspalvelun ja asiakkaiden tyytyväisyyden parantamiseen ostoskeskuksissa, kaupoissa ja ravintoloissa sekä prosessien ja turvallisuuden kehittämiseen varastoissa. Näillä eri käyttötapauksilla on hyvin erilaiset vaatimukset ja tarpeet sisäpaikannukselle, joten ei ole olemassa vain yhtä hyvää teknologista ratkaisua tietylle käyttötapaukselle. Haastatteluista oli kuitenkin mahdollista muodostaa kolme sisäpaikannusteknologian valintaan vaikuttavaa asiaa: 1) sisäpaikannusteknologian tarkkuus, 2) tapahtuuko paikannus mobiililaitteen vai käyttäjän kantaman tunnisteen kautta ja 3) voiko paikannusjärjestelmän tukiasemia asentaa rakennukseen. Lopuksi esitellään ehdotelma sisäpaikannusmallista arvoverkkokonfiguraatiolla (Value Network Configuration) vähittäiskaupan alan yritykselle haastatteluiden perusteella

    Location- and collision avoidance system technologies, providers and potential applications

    Get PDF

    Location- and collision avoidance system technologies, providers and potential applications

    Get PDF

    PinMe: Tracking a Smartphone User around the World

    Full text link
    With the pervasive use of smartphones that sense, collect, and process valuable information about the environment, ensuring location privacy has become one of the most important concerns in the modern age. A few recent research studies discuss the feasibility of processing data gathered by a smartphone to locate the phone's owner, even when the user does not intend to share his location information, e.g., when the Global Positioning System (GPS) is off. Previous research efforts rely on at least one of the two following fundamental requirements, which significantly limit the ability of the adversary: (i) the attacker must accurately know either the user's initial location or the set of routes through which the user travels and/or (ii) the attacker must measure a set of features, e.g., the device's acceleration, for potential routes in advance and construct a training dataset. In this paper, we demonstrate that neither of the above-mentioned requirements is essential for compromising the user's location privacy. We describe PinMe, a novel user-location mechanism that exploits non-sensory/sensory data stored on the smartphone, e.g., the environment's air pressure, along with publicly-available auxiliary information, e.g., elevation maps, to estimate the user's location when all location services, e.g., GPS, are turned off.Comment: This is the preprint version: the paper has been published in IEEE Trans. Multi-Scale Computing Systems, DOI: 0.1109/TMSCS.2017.275146

    COVID-19 & privacy: Enhancing of indoor localization architectures towards effective social distancing

    Get PDF
    Abstract The way people access services in indoor environments has dramatically changed in the last year. The countermeasures to the COVID-19 pandemic imposed a disruptive requirement, namely preserving social distance among people in indoor environments. We explore in this work the possibility of adopting the indoor localization technologies to measure the distance among users in indoor environments. We discuss how information about people's contacts collected can be exploited during three stages: before, during, and after people access a service. We present a reference architecture for an Indoor Localization System (ILS), and we illustrate three representative use-cases. We derive some architectural requirements, and we discuss some issues that concretely cope with the real installation of an ILS in real-world settings. In particular, we explore the privacy and trust reputation of an ILS, the discovery phase, and the deployment of the ILS in real-world settings. We finally present an evaluation framework for assessing the performance of the architecture proposed
    corecore