1,456 research outputs found

    Sophisticated security verification on routing repaired balanced cell-based dual-rail logic against side channel analysis

    Get PDF
    Conventional dual-rail precharge logic suffers from difficult implementations of dual-rail structure for obtaining strict compensation between the counterpart rails. As a light-weight and high-speed dual-rail style, balanced cell-based dual-rail logic (BCDL) uses synchronised compound gates with global precharge signal to provide high resistance against differential power or electromagnetic analyses. BCDL can be realised from generic field programmable gate array (FPGA) design flows with constraints. However, routings still exist as concerns because of the deficient flexibility on routing control, which unfavourably results in bias between complementary nets in security-sensitive parts. In this article, based on a routing repair technique, novel verifications towards routing effect are presented. An 8 bit simplified advanced encryption processing (AES)-co-processor is executed that is constructed on block random access memory (RAM)-based BCDL in Xilinx Virtex-5 FPGAs. Since imbalanced routing are major defects in BCDL, the authors can rule out other influences and fairly quantify the security variants. A series of asymptotic correlation electromagnetic (EM) analyses are launched towards a group of circuits with consecutive routing schemes to be able to verify routing impact on side channel analyses. After repairing the non-identical routings, Mutual information analyses are executed to further validate the concrete security increase obtained from identical routing pairs in BCDL

    Printed Circuit Board (PCB) design process and fabrication

    Get PDF
    This module describes main characteristics of Printed Circuit Boards (PCBs). A brief history of PCBs is introduced in the first chapter. Then, the design processes and the fabrication of PCBs are addressed and finally a study case is presented in the last chapter of the module.Peer ReviewedPostprint (published version

    Physical Unclonable Function Reliability on Reconfigurable Hardware and Reliability Degradation with Temperature and Supply Voltage Variations

    Get PDF
    A hardware security solution using a Physical Unclonable Function (PUF) is a promising approach to ensure security for physical systems. PUF utilizes the inherent instance-specific parameters of physical objects and it is evaluated based on the performance parameters such as uniqueness, reliability, randomness, and tamper evidence of the Challenge and Response Pairs (CRPs). These performance parameters are affected by operating conditions such as temperature and supply voltage variations. In addition, PUF implementation on Field Programmable Gate Array (FPGA) platform is proven to be more complicated than PUF implementation on Application-Specific Integrated Circuit (ASIC) technologies. The automatic placement and routing of logic cells in FPGA can affect the performance of PUFs due to path delay imbalance. In this work, the impact of power supply and temperature variations, on the reliability of an arbiter PUF is studied. Simulation results are conducted to determine the effects of these varying conditions on the CRPs. Simulation results show that ± 10% of power supply variation can affect the reliability of an arbiter PUF by about 51%, similarly temperature fluctuation between -40 0C and +60 0C reduces the PUF reliability by 58%. In addition, a new methodology to implement a reliable arbiter PUF on an FPGA platform is presented. Instead of using an extra delay measurement module, the Chip Planner tool for FPGA is used for manually placement to minimize the path delay misalignment to less than 8 ps

    Analysis and Mitigation of Remote Side-Channel and Fault Attacks on the Electrical Level

    Get PDF
    In der fortlaufenden Miniaturisierung von integrierten Schaltungen werden physikalische Grenzen erreicht, wobei beispielsweise Einzelatomtransistoren eine mögliche untere Grenze für Strukturgrößen darstellen. Zudem ist die Herstellung der neuesten Generationen von Mikrochips heutzutage finanziell nur noch von großen, multinationalen Unternehmen zu stemmen. Aufgrund dieser Entwicklung ist Miniaturisierung nicht länger die treibende Kraft um die Leistung von elektronischen Komponenten weiter zu erhöhen. Stattdessen werden klassische Computerarchitekturen mit generischen Prozessoren weiterentwickelt zu heterogenen Systemen mit hoher Parallelität und speziellen Beschleunigern. Allerdings wird in diesen heterogenen Systemen auch der Schutz von privaten Daten gegen Angreifer zunehmend schwieriger. Neue Arten von Hardware-Komponenten, neue Arten von Anwendungen und eine allgemein erhöhte Komplexität sind einige der Faktoren, die die Sicherheit in solchen Systemen zur Herausforderung machen. Kryptografische Algorithmen sind oftmals nur unter bestimmten Annahmen über den Angreifer wirklich sicher. Es wird zum Beispiel oft angenommen, dass der Angreifer nur auf Eingaben und Ausgaben eines Moduls zugreifen kann, während interne Signale und Zwischenwerte verborgen sind. In echten Implementierungen zeigen jedoch Angriffe über Seitenkanäle und Faults die Grenzen dieses sogenannten Black-Box-Modells auf. Während bei Seitenkanalangriffen der Angreifer datenabhängige Messgrößen wie Stromverbrauch oder elektromagnetische Strahlung ausnutzt, wird bei Fault Angriffen aktiv in die Berechnungen eingegriffen, und die falschen Ausgabewerte zum Finden der geheimen Daten verwendet. Diese Art von Angriffen auf Implementierungen wurde ursprünglich nur im Kontext eines lokalen Angreifers mit Zugriff auf das Zielgerät behandelt. Jedoch haben bereits Angriffe, die auf der Messung der Zeit für bestimmte Speicherzugriffe basieren, gezeigt, dass die Bedrohung auch durch Angreifer mit Fernzugriff besteht. In dieser Arbeit wird die Bedrohung durch Seitenkanal- und Fault-Angriffe über Fernzugriff behandelt, welche eng mit der Entwicklung zu mehr heterogenen Systemen verknüpft sind. Ein Beispiel für neuartige Hardware im heterogenen Rechnen sind Field-Programmable Gate Arrays (FPGAs), mit welchen sich fast beliebige Schaltungen in programmierbarer Logik realisieren lassen. Diese Logik-Chips werden bereits jetzt als Beschleuniger sowohl in der Cloud als auch in Endgeräten eingesetzt. Allerdings wurde gezeigt, wie die Flexibilität dieser Beschleuniger zur Implementierung von Sensoren zur Abschätzung der Versorgungsspannung ausgenutzt werden kann. Zudem können durch eine spezielle Art der Aktivierung von großen Mengen an Logik Berechnungen in anderen Schaltungen für Fault Angriffe gestört werden. Diese Bedrohung wird hier beispielsweise durch die Erweiterung bestehender Angriffe weiter analysiert und es werden Strategien zur Absicherung dagegen entwickelt

    Anti-Tamper Method for Field Programmable Gate Arrays Through Dynamic Reconfiguration and Decoy Circuits

    Get PDF
    As Field Programmable Gate Arrays (FPGAs) become more widely used, security concerns have been raised regarding FPGA use for cryptographic, sensitive, or proprietary data. Storing or implementing proprietary code and designs on FPGAs could result in the compromise of sensitive information if the FPGA device was physically relinquished or remotely accessible to adversaries seeking to obtain the information. Although multiple defensive measures have been implemented (and overcome), the possibility exists to create a secure design through the implementation of polymorphic Dynamically Reconfigurable FPGA (DRFPGA) circuits. Using polymorphic DRFPGAs removes the static attributes from their design; thus, substantially increasing the difficulty of successful adversarial reverse-engineering attacks. A variety of dynamically reconfigurable methodologies exist for implementation that challenge designers in the reconfigurable technology field. A Hardware Description Language (HDL) DRFPGA model is presented for use in security applications. The Very High Speed Integrated Circuit HDL (VHSIC) language was chosen to take advantage of its capabilities, which are well suited to the current research. Additionally, algorithms that explicitly support granular autonomous reconfiguration have been developed and implemented on the DRFPGA as a means of protecting its designs. Documented testing validates the reconfiguration results and compares power usage, timing, and area estimates from a conventional and DRFPGA model
    corecore