163 research outputs found

    A Survey of Digital Watermarking Techniques

    Full text link
    Volume 1 Issue 6 (August 2013

    Digital audio watermarking for broadcast monitoring and content identification

    Get PDF
    Copyright legislation was prompted exactly 300 years ago by a desire to protect authors against exploitation of their work by others. With regard to modern content owners, Digital Rights Management (DRM) issues have become very important since the advent of the Internet. Piracy, or illegal copying, costs content owners billions of dollars every year. DRM is just one tool that can assist content owners in exercising their rights. Two categories of DRM technologies have evolved in digital signal processing recently, namely digital fingerprinting and digital watermarking. One area of Copyright that is consistently overlooked in DRM developments is 'Public Performance'. The research described in this thesis analysed the administration of public performance rights within the music industry in general, with specific focus on the collective rights and broadcasting sectors in Ireland. Limitations in the administration of artists' rights were identified. The impact of these limitations on the careers of developing artists was evaluated. A digital audio watermarking scheme is proposed that would meet the requirements of both the broadcast and collective rights sectors. The goal of the scheme is to embed a standard identifier within an audio signal via modification of its spectral properties in such a way that it would be robust and perceptually transparent. Modification of the audio signal spectrum was attempted in a variety of ways. A method based on a super-resolution frequency identification technique was found to be most effective. The watermarking scheme was evaluated for robustness and found to be extremely effective in recovering embedded watermarks in music signals using a semi-blind decoding process. The final digital audio watermarking algorithm proposed facilitates the development of other applications in the domain of broadcast monitoring for the purposes of equitable royalty distribution along with additional applications and extension to other domains

    Dynamic block encryption with self-authenticating key exchange

    Get PDF
    One of the greatest challenges facing cryptographers is the mechanism used for key exchange. When secret data is transmitted, the chances are that there may be an attacker who will try to intercept and decrypt the message. Having done so, he/she might just gain advantage over the information obtained, or attempt to tamper with the message, and thus, misguiding the recipient. Both cases are equally fatal and may cause great harm as a consequence. In cryptography, there are two commonly used methods of exchanging secret keys between parties. In the first method, symmetric cryptography, the key is sent in advance, over some secure channel, which only the intended recipient can read. The second method of key sharing is by using a public key exchange method, where each party has a private and public key, a public key is shared and a private key is kept locally. In both cases, keys are exchanged between two parties. In this thesis, we propose a method whereby the risk of exchanging keys is minimised. The key is embedded in the encrypted text using a process that we call `chirp coding', and recovered by the recipient using a process that is based on correlation. The `chirp coding parameters' are exchanged between users by employing a USB flash memory retained by each user. If the keys are compromised they are still not usable because an attacker can only have access to part of the key. Alternatively, the software can be configured to operate in a one time parameter mode, in this mode, the parameters are agreed upon in advance. There is no parameter exchange during file transmission, except, of course, the key embedded in ciphertext. The thesis also introduces a method of encryption which utilises dynamic blocks, where the block size is different for each block. Prime numbers are used to drive two random number generators: a Linear Congruential Generator (LCG) which takes in the seed and initialises the system and a Blum-Blum Shum (BBS) generator which is used to generate random streams to encrypt messages, images or video clips for example. In each case, the key created is text dependent and therefore will change as each message is sent. The scheme presented in this research is composed of five basic modules. The first module is the key generation module, where the key to be generated is message dependent. The second module, encryption module, performs data encryption. The third module, key exchange module, embeds the key into the encrypted text. Once this is done, the message is transmitted and the recipient uses the key extraction module to retrieve the key and finally the decryption module is executed to decrypt the message and authenticate it. In addition, the message may be compressed before encryption and decompressed by the recipient after decryption using standard compression tools

    High capacity data embedding schemes for digital media

    Get PDF
    High capacity image data hiding methods and robust high capacity digital audio watermarking algorithms are studied in this thesis. The main results of this work are the development of novel algorithms with state-of-the-art performance, high capacity and transparency for image data hiding and robustness, high capacity and low distortion for audio watermarking.En esta tesis se estudian y proponen diversos métodos de data hiding de imágenes y watermarking de audio de alta capacidad. Los principales resultados de este trabajo consisten en la publicación de varios algoritmos novedosos con rendimiento a la altura de los mejores métodos del estado del arte, alta capacidad y transparencia, en el caso de data hiding de imágenes, y robustez, alta capacidad y baja distorsión para el watermarking de audio.En aquesta tesi s'estudien i es proposen diversos mètodes de data hiding d'imatges i watermarking d'àudio d'alta capacitat. Els resultats principals d'aquest treball consisteixen en la publicació de diversos algorismes nous amb rendiment a l'alçada dels millors mètodes de l'estat de l'art, alta capacitat i transparència, en el cas de data hiding d'imatges, i robustesa, alta capacitat i baixa distorsió per al watermarking d'àudio.Societat de la informació i el coneixemen

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Digital image watermarking techniques

    Get PDF
    The ability to resolve ownership disputes and copyright infringement is difficult in the worldwide digital age. There is an increasing need to develop techniques that protect the owner of digital data. Digital Watermarking is a technique used to embed a known piece of digital data within another piece of digital data. The embedded piece of data acts as a fingerprint for the owner, allowing the protection of copyright, authentication of the data, and tracing of illegal copies. The goal of this thesis is to produce two watermarking tools and compare their effectiveness with that of other watermarking tools. One of the tools uses a spatial watermarking technique, while the other uses a frequency based spread spectrum technique. These represent the two current approaches to digital watermarking. Use of a standard benchmark is necessary to advance the science of digital watermarking. Until recently, there have been no standard metrics for deter mining the effectiveness of a particular watermarking scheme. Several recent papers propose standard procedures and metrics for comparing watermarking techniques. The proposed metrics and test bed imagery are used as the basis for comparison with other watermark techniques. Overall, the most successful techniques model themselves after data communications techniques. In this case, the image is similar to the atmosphere (medium) and the watermark message is the signal communicated through the medium. The spread spectrum technique yields results that in some cases are comparable to commercial watermarking tools. The spatial domain tool as implemented is inadequate for comparison with the commercial tools

    Image watermarking, steganography, and morphological processing

    Get PDF
    With the fast development of computer technology, research in the fields of multimedia security, image processing, and robot vision have recently become popular. Image watermarking, steganogrphic system, morphological processing and shortest path planning are important subjects among them. In this dissertation, the fundamental techniques are reviewed first followed by the presentation of novel algorithms and theorems for these three subjects. The research on multimedia security consists of two parts, image watermarking and steganographic system. In image watermarking, several algorithms are developed to achieve different goals as shown below. In order to embed more watermarks and to minimize distortion of watermarked images, a novel watermarking technique using combinational spatial and frequency domains is presented. In order to correct rounding errors, a novel technique based on the genetic algorithm (GA) is developed. By separating medical images into Region of Interest (ROI) and non-ROI parts, higher compression rates can be achieved where the ROI is compressed by lossless compression and the non-ROI by lossy compression. The GA-based watermarking technique can also be considered as a fundamental platform for other fragile watermarking techniques. In order to simplify the selection and integrate different watermarking techniques, a novel adjusted-purpose digital watermarking is developed. In order to enlarge the capacity of robust watermarking, a novel robust high-capacity watermarking is developed. In steganographic system, a novel steganographic algorithm is developed by using GA to break the inspection of steganalytic system. In morphological processing, the GA-based techniques are developed to decompose arbitrary shapes of big binary structuring elements and arbitrary values of big grayscale structuring elements into small ones. The decomposition is suited for a parallel-pipelined architecture. The techniques can speed up the morphological processing and allow full freedom for users to design any type and any size of binary and grayscale structuring elements. In applications such as shortest path planning, a novel method is first presented to obtaining Euclidean distance transformation (EDT) in just two scans of image. The shortest path can be extracted based on distance maps by tracking minimum values. In order to record the motion path, a new chain-code representation is developed to allow forward and backward movements. By placing the smooth turning-angle constraint, it is possible to mimic realistic motions of cars. By using dynamically rotational morphology, it is not only guarantee collision-free in the shortest path, but also reduce time complexity dramatically. As soon as the distance map of a destination and collision-free codes have been established off-line, shortest paths of cars given any starting location toward the destination can be promptly obtained on-line

    A Covert Encryption Method for Applications in Electronic Data Interchange

    Get PDF
    A principal weakness of all encryption systems is that the output data can be ‘seen’ to be encrypted. In other words, encrypted data provides a ‘flag’ on the potential value of the information that has been encrypted. In this paper, we provide a new approach to ‘hiding’ encrypted data in a digital image. In conventional (symmetric) encryption, the plaintext is usually represented as a binary stream and encrypted using an XOR type operation with a binary cipher. The algorithm used is ideally designed to: (i) generate a maximum entropy cipher so that there is no bias with regard to any bit; (ii) maximize diffusion in terms of key dependency so that a change in any bit of the key can effect any, and potentially all, bits of the cipher. In the work reported here, we consider an approach in which a binary or low-bit plaintext image is encrypted with a decimal integer or floating point cipher using a convolution operation and the output quantized into a 1-bit array generating a binary image ciphertext. This output is then ‘embedded’ in a host image to hide the encrypted information. Embedding is undertaken either in the lowest 1-bit layer or multiple 1-bit layers. Decryption is accomplished by: (i) extracting the binary image from the host image; (ii) correlating the result with the original cipher. In principle, any cipher generator can be used for this purpose and the method has been designed to operate with 24-bit colour images. The approach has a variety of applications and, in this paper, we focus on the authentication and self-authentication of e-documents (letters and certificates, for example) that are communicated over the Internet and are thereby vulnerable to attack (e.g. modification, editing, counterfeiting etc.). In addition to document authentication, the approach considered provides a way of propagating disinformation and a solution to scenarios that require ‘plausible deniability’

    Public Commons for Geospatial Data: A Conceptual Model

    Get PDF
    A wide variety of spatial data collection efforts are ongoing throughout local, state and federal agencies, private firms and non-profit organizations. Each effort is established for a different purpose but organizations and individuals often collect and maintain the same or similar information. The United States federal government has undertaken many initiatives such as the National Spatial Data Infrastructure, the National Map and Geospatial One-Stop to reduce duplicative spatial data collection and promote the coordinated use, sharing, and dissemination of spatial data nationwide. A key premise in most of these initiatives is that no national government will be able to gather and maintain more than a small percentage of the geographic data that users want and desire. Thus, national initiatives depend typically on the cooperation of those already gathering spatial data and those using GIs to meet specific needs to help construct and maintain these spatial data infrastructures and geo-libraries for their nations (Onsrud 2001). Some of the impediments to widespread spatial data sharing are well known from directly asking GIs data producers why they are not currently involved in creating datasets that are of common or compatible formats, documenting their datasets in a standardized metadata format or making their datasets more readily available to others through Data Clearinghouses or geo-libraries. The research described in this thesis addresses the impediments to wide-scale spatial data sharing faced by GIs data producers and explores a new conceptual data-sharing approach, the Public Commons for Geospatial Data, that supports user-friendly metadata creation, open access licenses, archival services and documentation of parent lineage of the contributors and value- adders of digital spatial data sets

    Steganalysis of video sequences using collusion sensitivity

    Get PDF
    In this thesis we present an effective steganalysis technique for digital video sequences based on the collusion attack. Steganalysis is the process of detecting with a high probability the presence of covert data in multimedia. Existing algorithms for steganalysis target detecting covert information in still images. When applied directly to video sequences these approaches are suboptimal. In this thesis we present methods that overcome this limitation by using redundant information present in the temporal domain to detect covert messages in the form of Gaussian watermarks. In particular we target the spread spectrum steganography method because of its widespread use. Our gains are achieved by exploiting the collusion attack that has recently been studied in the field of digital video watermarking and more sophisticated pattern recognition tools. Through analysis and simulations we, evaluate the effectiveness of the video steganalysis method based on averaging based collusion scheme. Other forms of collusion attack in the form of weighted linear collusion and block-based collusion schemes have been proposed to improve the detection performance. The proposed steganalsyis methods were successful in detecting hidden watermarks bearing low SNR with high accuracy. The simulation results also show the improved performance of the proposed temporal based methods over the spatial methods. We conclude that the essence of future video steganalysis techniques lies in the exploitation of the temporal redundancy
    • …
    corecore