28,277 research outputs found

    Scaling ORAM for Secure Computation

    Get PDF
    We design and implement a Distributed Oblivious Random Access Memory (ORAM) data structure that is optimized for use in two-party secure computation protocols. We improve upon the access time of previous constructions by a factor of up to ten, their memory overhead by a factor of one hundred or more, and their initialization time by a factor of thousands. We are able to instantiate ORAMs that hold 2342^{34} bytes, and perform operations on them in seconds, which was not previously feasible with any implemented scheme. Unlike prior ORAM constructions based on hierarchical hashing, permutation, or trees, our Distributed ORAM is derived from the new Function Secret Sharing scheme introduced by Boyle, Gilboa and Ishai. This significantly reduces the amount of secure computation required to implement an ORAM access, albeit at the cost of O(n)O(n) efficient local memory operations. We implement our construction and find that, despite its poor O(n)O(n) asymptotic complexity, it still outperforms the fastest previously known constructions, Circuit ORAM and Square-root ORAM, for datasets that are 32 KiB or larger, and outperforms prior work on applications such as stable matching or binary search by factors of two to ten

    On the Design of Cryptographic Primitives

    Full text link
    The main objective of this work is twofold. On the one hand, it gives a brief overview of the area of two-party cryptographic protocols. On the other hand, it proposes new schemes and guidelines for improving the practice of robust protocol design. In order to achieve such a double goal, a tour through the descriptions of the two main cryptographic primitives is carried out. Within this survey, some of the most representative algorithms based on the Theory of Finite Fields are provided and new general schemes and specific algorithms based on Graph Theory are proposed

    The Melbourne Shuffle: Improving Oblivious Storage in the Cloud

    Full text link
    We present a simple, efficient, and secure data-oblivious randomized shuffle algorithm. This is the first secure data-oblivious shuffle that is not based on sorting. Our method can be used to improve previous oblivious storage solutions for network-based outsourcing of data

    Security of almost ALL discrete log bits

    Get PDF
    Let G be a finite cyclic group with generator \alpha and with an encoding so that multiplication is computable in polynomial time. We study the security of bits of the discrete log x when given \exp_{\alpha}(x), assuming that the exponentiation function \exp_{\alpha}(x) = \alpha^x is one-way. We reduce he general problem to the case that G has odd order q. If G has odd order q the security of the least-significant bits of x and of the most significant bits of the rational number \frac{x}{q} \in [0,1) follows from the work of Peralta [P85] and Long and Wigderson [LW88]. We generalize these bits and study the security of consecutive shift bits lsb(2^{-i}x mod q) for i=k+1,...,k+j. When we restrict \exp_{\alpha} to arguments x such that some sequence of j consecutive shift bits of x is constant (i.e., not depending on x) we call it a 2^{-j}-fraction of \exp_{\alpha}. For groups of odd group order q we show that every two 2^{-j}-fractions of \exp_{\alpha} are equally one-way by a polynomial time transformation: Either they are all one-way or none of them. Our key theorem shows that arbitrary j consecutive shift bits of x are simultaneously secure when given \exp_{\alpha}(x) iff the 2^{-j}-fractions of \exp_{\alpha} are one-way. In particular this applies to the j least-significant bits of x and to the j most-significant bits of \frac{x}{q} \in [0,1). For one-way \exp_{\alpha} the individual bits of x are secure when given \exp_{\alpha}(x) by the method of Hastad, N\"aslund [HN98]. For groups of even order 2^{s}q we show that the j least-significant bits of \lfloor x/2^s\rfloor, as well as the j most-significant bits of \frac{x}{q} \in [0,1), are simultaneously secure iff the 2^{-j}-fractions of \exp_{\alpha'} are one-way for \alpha' := \alpha^{2^s}. We use and extend the models of generic algorithms of Nechaev (1994) and Shoup (1997). We determine the generic complexity of inverting fractions of \exp_{\alpha} for the case that \alpha has prime order q. As a consequence, arbitrary segments of (1-\varepsilon)\lg q consecutive shift bits of random x are for constant \varepsilon >0 simultaneously secure against generic attacks. Every generic algorithm using tt generic steps (group operations) for distinguishing bit strings of j consecutive shift bits of x from random bit strings has at most advantage O((\lg q) j\sqrt{t} (2^j/q)^{\frac14})
    • …
    corecore