53 research outputs found

    Secure data management : VLDB 2004 workshop, SDM 2004, Toronto, Canada, August 30, 2004 : proceedings

    No full text

    Towards Mobility Data Science (Vision Paper)

    Full text link
    Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of GPS-equipped mobile devices and other inexpensive location-tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated significant impact in various domains including traffic management, urban planning, and health sciences. In this paper, we present the emerging domain of mobility data science. Towards a unified approach to mobility data science, we envision a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state of the art and describe open challenges for the research community in the coming years.Comment: Updated arXiv metadata to include two authors that were missing from the metadata. PDF has not been change

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    Simurgh: a fully decentralized and secure NVMM user space file system

    Get PDF
    The availability of non-volatile main memory (NVMM) has started a new era for storage systems and NVMM specific file systems can support extremely high data and metadata rates, which are required by many HPC and data-intensive applications. Scaling metadata performance within NVMM file systems is nevertheless often restricted by the Linux kernel storage stack, while simply moving metadata management to the user space can compromise security or flexibility. This paper introduces Simurgh, a hardware-assisted user space file system with decentralized metadata management that allows secure metadata updates from within user space. Simurgh guarantees consistency, durability, and ordering of updates without sacrificing scalability. Security is enforced by only allowing NVMM access from protected user space functions, which can be implemented through two proposed instructions. Comparisons with other NVMM file systems show that Simurgh improves metadata performance up to 18x and application performance up to 89% compared to the second-fastest file system.This work has been supported by the European Comission’s BigStorage project H2020-MSCA-ITN2014-642963. It is also supported by the Big Data in Atmospheric Physics (BINARY) project, funded by the Carl Zeiss Foundation under Grant No.: P2018-02-003.Peer ReviewedPostprint (author's final draft

    LTAM: A Location-Temporal Authorization Model

    Get PDF

    A Generic Construction for Verifiable Attribute-based Keyword Search Schemes

    Get PDF
    Cloud data owners encrypt their documents before outsourcing to provide their privacy. They could determine a search control policy and delegate the ability of search token generation to the users whose attributes satisfy the search control policy. Verifiable attribute-based keyword search (VABKS) where the users can also verify the accuracy of cloud functionality is one of such schemes. In this paper, the first generic construction for VABKS is proposed. To this end, the notion of hierarchical identity-based multi-designated verifier signature (HIB-MDVS) has been introduced and existential forgery under chosen message attack (EF-CMA) is formally defined for its unforgeability. Furthermore, anonymity against chosen identity vector set and chosen plaintext attack (Anon-CIVS-CPA) has been defined as the security definition of hierarchical identity-based broadcast encryption (HIBBE) in a formal way. The proposed construction is built in a modular structure by using HIBBE, HIB-MDVS, and Bloom filter as the building blocks. We prove that the security of proposed construction is based on the unforgeability of HIB-MDVS and the anonymity of HIBBE. Finally, the concept of verifiable ranked keyword search will be introduced and a construction of this primitive will be presented which is based on proposed VABKS
    • …
    corecore