7,174 research outputs found

    Telehealth and Mobile Health Applied To IntegratedBehavioral Care: OpportunitiesFor Progress In New Hampshire

    Get PDF
    This paper is an accompanying document to a webinar delivered on May 16, 2017, for the New Hampshire Citizens Health Initiative (Initiative). As integrated behavioral health efforts in New Hampshire gain traction, clinicians, administrators, payers, and policy makers are looking for additional efficiencies in delivering high quality healthcare. Telehealth and mobile health (mHealth) have the opportunity to help achieve this while delivering a robust, empowered patient experience. The promise of video-based technology was first made in 1964 as Bell Telephone shared its Picturephone® with the world. This was the first device with audio and video delivered in an integrated technology platform. Fast-forward to today with Skype, FaceTime, and webinar tools being ubiquitous in our personal and business lives, but often slow to be adopted in the delivery of medicine. Combining technology-savvy consumers with New Hampshire’s high rate of electronic health record (EHR) technology adoption, a fairly robust telecommunications infrastructure, and a predominately rural setting, there is strong foundation for telehealth and mHealth expansion in New Hampshire’s integrated health continuum

    FIT A Fog Computing Device for Speech TeleTreatments

    Full text link
    There is an increasing demand for smart fogcomputing gateways as the size of cloud data is growing. This paper presents a Fog computing interface (FIT) for processing clinical speech data. FIT builds upon our previous work on EchoWear, a wearable technology that validated the use of smartwatches for collecting clinical speech data from patients with Parkinson's disease (PD). The fog interface is a low-power embedded system that acts as a smart interface between the smartwatch and the cloud. It collects, stores, and processes the speech data before sending speech features to secure cloud storage. We developed and validated a working prototype of FIT that enabled remote processing of clinical speech data to get speech clinical features such as loudness, short-time energy, zero-crossing rate, and spectral centroid. We used speech data from six patients with PD in their homes for validating FIT. Our results showed the efficacy of FIT as a Fog interface to translate the clinical speech processing chain (CLIP) from a cloud-based backend to a fog-based smart gateway.Comment: 3 pages, 5 figures, 1 table, 2nd IEEE International Conference on Smart Computing SMARTCOMP 2016, Missouri, USA, 201

    Adaptative Image Flow in Collaborative Medical Telediagnosis Environments

    No full text
    International audienceTelemedicine, the application of telecommunication in the medicine field, has been developed to meet major problems encountered in connecting doctors with patients and other medical staff. Having a robust and efficient telemedical system has always been a challenge. The system needs to make the members in different locations capable of sharing medical data efficiently and without errors. In this work, we present a telemedical system that overcomes these challenges.We deploy a collaborative system and adapt data to store, visualize, modify and transfer fluorescence images efficiently and robustly at the same time. We also make the system adaptive to communicate across different client platforms. We conduct experiments comparing our method with traditional collaborative system, and all results confirm our system is over others in terms of efficiency and robustness

    FHIRChain: Applying Blockchain to Securely and Scalably Share Clinical Data

    Full text link
    Secure and scalable data sharing is essential for collaborative clinical decision making. Conventional clinical data efforts are often siloed, however, which creates barriers to efficient information exchange and impedes effective treatment decision made for patients. This paper provides four contributions to the study of applying blockchain technology to clinical data sharing in the context of technical requirements defined in the "Shared Nationwide Interoperability Roadmap" from the Office of the National Coordinator for Health Information Technology (ONC). First, we analyze the ONC requirements and their implications for blockchain-based systems. Second, we present FHIRChain, which is a blockchain-based architecture designed to meet ONC requirements by encapsulating the HL7 Fast Healthcare Interoperability Resources (FHIR) standard for shared clinical data. Third, we demonstrate a FHIRChain-based decentralized app using digital health identities to authenticate participants in a case study of collaborative decision making for remote cancer care. Fourth, we highlight key lessons learned from our case study

    Communication tools in the COVID-19 era and beyond which can optimise professional practice and patient care

    Get PDF
    Following the outbreak of the novel SARS-CoV-2 (COVID-19), the World Health Organization made a number of recommendations regarding the utilisation of healthcare services. In general, there has been a reduction in elective healthcare services including outpatient clinics, diagnostic services and elective surgery. Inevitably these reductions for all but the most urgent clinical work will have a detrimental impact on patients, and alternative ways of working including the use of telemedicine may help to mitigate this. Similarly, electronic solutions may enable clinicians to maintain inter and intra-professional working in both clinical and academic settings. Implementation of electronic solutions to minimise direct patient contact will be new to many clinicians, and the sheer number of software solutions available and varying functionality may be overwhelming to anyone unfamiliar with ‘virtual communication’. In this article, we will aim to summarise the variety of electronic communication platforms and tools available for clinicians and patients, detailing their utility, pros and cons, and some 'tips and tricks' from our experience through our work as an international research collaborative

    Telemedicine using mobile telecommunication: towards syntactic interoperability in teleexpertise

    Get PDF
    Telemedicine allows collaborative activities between health professionals for the deployment of medical procedures carried out remotely by means of device using information and communication technologies. This article focuses on the Teleexpertise that allows collaboration between medical professionals in order to share knowledge and expert advices used as explanation elements for decision support. We propose a conceptual model integrating the FIPA (Foundation for Intelligent Physical Agents) Contract Net Protocol which permits to collect medical professionals’ answers for a request for teleexpertise in an efficient manner. Our model satisfies four requirements (coverage, QoS (Quality of Service) guarantees and prioritisation, mobility and roaming, service usability) on the configuration and operation of the underlying network and the services. Therefore, we provide an operational assistance by improvement of the networks quality of service via interoperable web services. Finally, we hope to bring a tangible contribution on the implementation of this suggested conceptualization that will allow to generate relevant and action-oriented finding
    • …
    corecore