560 research outputs found

    Security in Wireless Local Area Networks (WLANs)

    Get PDF
    Major research domains in the WLAN security include: access control & data frame protection, lightweight authentication and secure handoff. Access control standard like IEEE 802.11i provides flexibility in user authentication but on the other hand fell prey to Denial of Service (DoS) attacks. For Protecting the data communication between two communicating devices—three standard protocols i.e., WEP (Wired Equivalent Privacy), TKIP (Temporal Key Integrity Protocol) and AES-CCMP (Advanced Encryption Standard—Counter mode with CBC-MAC protocol) are used. Out of these, AES-CCMP protocol is secure enough and mostly used in enterprises. In WLAN environment lightweight authentication is an asset, provided it also satisfies other security properties like protecting the authentication stream or token along with securing the transmitted message. CAPWAP (Control and Provisioning of Wireless Access Points), HOKEY (Hand Over Keying) and IEEE 802.11r are major protocols for executing the secure handoff. In WLANs, handoff should not only be performed within time limits as required by the real time applications but should also be used to transfer safely the keying material for further communication. In this chapter, a comparative study of the security mechanisms under the above-mentioned research domains is provided

    Developing a Systematic Process for Mobile Surveying and Analysis of WLAN security

    Get PDF
    Wireless Local Area Network (WLAN), familiarly known as Wi-Fi, is one of the most used wireless networking technologies. WLANs have rapidly grown in popularity since the release of the original IEEE 802.11 WLAN standard in 1997. We are using our beloved wireless internet connection for everything and are connecting more and more devices into our wireless networks in every form imaginable. As the number of wireless network devices keeps increasing, so does the importance of wireless network security. During its now over twenty-year life cycle, a multitude of various security measures and protocols have been introduced into WLAN connections to keep our wireless communication secure. The most notable security measures presented in the 802.11 standard have been the encryption protocols Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA). Both encryption protocols have had their share of flaws and vulnerabilities, some of them so severe that the use of WEP and the first generation of the WPA protocol have been deemed irredeemably broken and unfit to be used for WLAN encryption. Even though the aforementioned encryption protocols have been long since deemed fatally broken and insecure, research shows that both can still be found in use today. The purpose of this Master’s Thesis is to develop a process for surveying wireless local area networks and to survey the current state of WLAN security in Finland. The goal has been to develop a WLAN surveying process that would at the same time be efficient, scalable, and easily replicable. The purpose of the survey is to determine to what extent are the deprecated encryption protocols used in Finland. Furthermore, we want to find out in what state is WLAN security currently in Finland by observing the use of other WLAN security practices. The survey process presented in this work is based on a WLAN scanning method called Wardriving. Despite its intimidating name, wardriving is simply a form of passive wireless network scanning. Passive wireless network scanning is used for collecting information about the surrounding wireless networks by listening to the messages broadcasted by wireless network devices. To collect our research data, we conducted wardriving surveys on three separate occasions between the spring of 2019 and early spring of 2020, in a typical medium-sized Finnish city. Our survey results show that 2.2% out of the located networks used insecure encryption protocols and 9.2% of the located networks did not use any encryption protocol. While the percentage of insecure networks is moderately low, we observed during our study that private consumers are reluctant to change the factory-set default settings of their wireless network devices, possibly exposing them to other security threats

    Masquerading Techniques in IEEE 802.11 Wireless Local Area Networks

    Get PDF
    The airborne nature of wireless transmission offers a potential target for attackers to compromise IEEE 802.11 Wireless Local Area Network (WLAN). In this dissertation, we explore the current WLAN security threats and their corresponding defense solutions. In our study, we divide WLAN vulnerabilities into two aspects, client, and administrator. The client-side vulnerability investigation is based on examining the Evil Twin Attack (ETA) while our administrator side research targets Wi-Fi Protected Access II (WPA2). Three novel techniques have been presented to detect ETA. The detection methods are based on (1) creating a secure connection to a remote server to detect the change of gateway\u27s public IP address by switching from one Access Point (AP) to another. (2) Monitoring multiple Wi-Fi channels in a random order looking for specific data packets sent by the remote server. (3) Merging the previous solutions into one universal ETA detection method using Virtual Wireless Clients (VWCs). On the other hand, we present a new vulnerability that allows an attacker to force the victim\u27s smartphone to consume data through the cellular network by starting the data download on the victim\u27s cell phone without the victim\u27s permission. A new scheme has been developed to speed up the active dictionary attack intensity on WPA2 based on two novel ideas. First, the scheme connects multiple VWCs to the AP at the same time-each VWC has its own spoofed MAC address. Second, each of the VWCs could try many passphrases using single wireless session. Furthermore, we present a new technique to avoid bandwidth limitation imposed by Wi-Fi hotspots. The proposed method creates multiple VWCs to access the WLAN. The combination of the individual bandwidth of each VWC results in an increase of the total bandwidth gained by the attacker. All proposal techniques have been implemented and evaluated in real-life scenarios

    ANALYZING AND EVALUATING THE SECURITY STANDARDS IN WIRELESS NETWORK: A REVIEW STUDY

    Get PDF
    Wireless networks used widely in office, home, and public places so security is one of the significant issues to keep the transmitted information safe. The applied security standards have been developed in response to the demand of high security and the developed hardware with software. Currently, the available security standards are (WEP, WPA, WPA2 and under development WPA3). These security standards are different in the offered security level base on the employed authentication method and encryption algorithms. The major objective of this paper is studying security standards and analyzing them based on their features. In addition to presenting a detailed review about WPA3 and its improvements over the older security standards. The conducted evaluations explained the differences among the Wi-Fi security standards in term of the offered security level, software and hardware requirements

    Security technologies for wireless access to local area networks

    Get PDF
    In today’s world, computers and networks are connected to all life aspects and professions. The amount of information, personal and organizational, spread over the network is increasing exponentially. Simultaneously, malicious attacks are being developed at the same speed, which makes having a secure network system a crucial factor on every level and in any organization. Achieving a high protection level has been the goal of many organizations, such as the Wi-Fi Alliance R , and many standards and protocols have been developed over time. This work addresses the historical development of WLAN security technologies, starting from the oldest standard, WEP, and reaching the newly released standard WPA3, passing through the several versions in between,WPA, WPS, WPA2, and EAP. Along with WPA3, this work addresses two newer certificates, Enhanced OpenTM and Easy ConnectTM. Furthermore, a comparative analysis of the previous standards is also presented, detailing their security mechanisms, flaws, attacks, and the measures they have adopted to prevent these attacks. Focusing on the new released WPA3, this work presents a deep study on both WPA3 and EAP-pwd. The development of WPA3 had the objective of providing strong protection, even if the network’s password is considered weak. However, this objective was not fully accomplished and some recent research work discovered design flaws in this new standard. Along with the above studies, this master thesis’ work builds also a network for penetration testing using a set of new devices that support the new standard. A group of possible attacks onWi-Fi latest security standards was implemented on the network, testing the response against each of them, discussing the reason behind the success or the failure of the attack, and providing a set of countermeasures applicable against these attacks. Obtained results show that WPA3 has overcome many of WPA2’s issues, however, it is still unable to overcome some major Wi-Fi vulnerabilities.No mundo de hoje, os computadores e as redes estão conectados praticamente a todos os aspectos da nossa vida pessoal e profissional. A quantidade de informações, pessoais e organizacionais, espalhadas pela rede está a aumentar exponencialmente. Simultaneamente, também os ataques maliciosos estão a aumentar à mesma velocidade, o que faz com que um sistema de rede seguro seja um fator crucial a todos os níveis e em qualquer organização. Alcançar altos níveis de proteção tem sido o objetivo de trabalho de muitas organizações, como a Wi-Fi Alliance R , tendo muitos standards e protocolos sido desenvolvidos ao longo do tempo. Este trabalho aborda o desenvolvimento histórico das tecnologias de segurança para WLANs, começando pelo standard mais antigo, WEP, e acabando no recém-chegado WPA3, passando pelas várias versões intermedias, WPA, WPS, WPA2 e EAP. Juntamente com o WPA3, este trabalho aborda os dois certificados mais recentes, Enhanced OpenTM e Easy ConnectTM. Além disso, também é apresentada uma análise comparativa dos standards anteriores, detalhando os seus principais mecanismos de segurança, falhas, ataques a que são susceptíveis e medidas adotadas para evitar esses ataques. Quanto ao novo WPA3 e EAP-pwd, este trabalho apresenta um estudo aprofundado sobre os seus modos "Personal" e "Enterprise". O desenvolvimento do WPA3 teve por objetivo fornecer proteção forte, mesmo que a password de rede seja considerada fraca. No entanto, esse objetivo não foi totalmente alcançado e alguma investigação realizada recentemente detectou falhas de desenho nesse novo padrão. Juntamente com os estudo dos standards acima referidos, o trabalho realizado para esta tese de mestrado também constrói uma rede para testes de penetração usando um conjunto de novos dispositivos que já suportam o novo standard. São aplicados vários ataques aos mais recentes padrões de segurança Wi-Fi, é testada a sua resposta contra cada um deles, é discutindo o motivo que justifica o sucesso ou a falha do ataque, e são indicadas contramedidas aplicáveis a esses ataques. Os resultados obtidos mostram que o WPA3 superou muitos dos problemas do WPA2 mas que, no entanto, ainda é incapaz de superar algumas das vulnerabilidades presentes nas redes Wi-Fi.First, I would like to express my deepest appreciation to those who gave me the possibility to complete my study and get my Master degree, the Aga Khan Foundation, who has supported me financiall

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system

    Review on wireless security protocols (WPA2 & WPA3)

    Get PDF
    Wireless technologies by virtue of supporting essential life activities and enabling communication have become one of the key components of every individual and organization's life. Wi-Fi has many security protocols. Despite multiple Wi-Fi security standards, hackers use Wi-Fi cracking tools to abuse wireless communications. This paper mostly will focus on the WPA2 protocol, which is largely in use nowadays, and its vulnerabilities. In addition, will discuss some key features of the WPA3 protocol

    Automated Man-in-the-Middle Attack Against Wi‑Fi Networks

    Get PDF
    Currently used wireless communication technologies suffer security weaknesses that can be exploited allowing to eavesdrop or to spoof network communication. In this paper, we present a practical tool that can automate the attack on wireless security. The developed package called wifimitm provides functionality for the automation of MitM attacks in the wireless environment. The package combines several existing tools and attack strategies to bypass the wireless security mechanisms, such as WEP, WPA, and WPS. The presented tool can be integrated into a solution for automated penetration testing. Also, a popularization of the fact that such attacks can be easily automated should raise public awareness about the state of wireless security
    corecore