290 research outputs found

    Key Generation in Wireless Sensor Networks Based on Frequency-selective Channels - Design, Implementation, and Analysis

    Full text link
    Key management in wireless sensor networks faces several new challenges. The scale, resource limitations, and new threats such as node capture necessitate the use of an on-line key generation by the nodes themselves. However, the cost of such schemes is high since their secrecy is based on computational complexity. Recently, several research contributions justified that the wireless channel itself can be used to generate information-theoretic secure keys. By exchanging sampling messages during movement, a bit string can be derived that is only known to the involved entities. Yet, movement is not the only possibility to generate randomness. The channel response is also strongly dependent on the frequency of the transmitted signal. In our work, we introduce a protocol for key generation based on the frequency-selectivity of channel fading. The practical advantage of this approach is that we do not require node movement. Thus, the frequent case of a sensor network with static motes is supported. Furthermore, the error correction property of the protocol mitigates the effects of measurement errors and other temporal effects, giving rise to an agreement rate of over 97%. We show the applicability of our protocol by implementing it on MICAz motes, and evaluate its robustness and secrecy through experiments and analysis.Comment: Submitted to IEEE Transactions on Dependable and Secure Computin

    Secure key design approaches using entropy harvesting in wireless sensor network: A survey

    Get PDF
    Physical layer based security design in wireless sensor networks have gained much importance since the past decade. The various constraints associated with such networks coupled with other factors such as their deployment mainly in remote areas, nature of communication etc. are responsible for development of research works where the focus is secured key generation, extraction, and sharing. Keeping the importance of such works in mind, this survey is undertaken that provides a vivid description of the different mechanisms adopted for securely generating the key as well its randomness extraction and also sharing. This survey work not only concentrates on the more common methods, like received signal strength based but also goes on to describe other uncommon strategies such as accelerometer based. We first discuss the three fundamental steps viz. randomness extraction, key generation and sharing and their importance in physical layer based security design. We then review existing secure key generation, extraction, and sharing mechanisms and also discuss their pros and cons. In addition, we present a comprehensive comparative study of the recent advancements in secure key generation, sharing, and randomness extraction approaches on the basis of adversary, secret bit generation rate, energy efficiency etc. Finally, the survey wraps up with some promising future research directions in this area

    Analysis of Channel-Based User Authentication by Key-Less and Key-Based Approaches

    Full text link
    User authentication (UA) supports the receiver in deciding whether a message comes from the claimed transmitter or from an impersonating attacker. In cryptographic approaches messages are signed with either an asymmetric or symmetric key, and a source of randomness is required to generate the key. In physical layer authentication (PLA) instead the receiver checks if received messages presumably coming from the same source undergo the same channel. We compare these solutions by considering the physical-layer channel features as randomness source for generating the key, thus allowing an immediate comparison with PLA (that already uses these features). For the symmetric-key approach we use secret key agreement, while for asymmetric-key the channel is used as entropy source at the transmitter. We focus on the asymptotic case of an infinite number of independent and identically distributed channel realizations, showing the correctness of all schemes and analyzing the secure authentication rate, that dictates the rate at which the probability that UA security is broken goes to zero as the number of used channel resources (to generate the key or for PLA) goes to infinity. Both passive and active attacks are considered and by numerical results we compare the various systems

    On Enhancements of Physical Layer Secret Key Generation and Its Application in Wireless Communication Systems

    Get PDF
    As an alternative and appealing approach to providing information security in wireless communication systems, secret key generation at physical layer has demonstrated its potential in terms of efficiency and reliability over traditional cryptographic methods. Without the necessity of a management centre for key distribution or reliance on computational complexity, physical layer key generation protocols enable two wireless entities to extract identical and dynamic keys from the randomness of the wireless channels associated with them. In this thesis, the reliability of secret key generation at the physical layer is examined in practical wireless channels with imperfect channel state information (CSI). Theoretical analyses are provided to relate key match rate with channel\u27s signal-to-noise ratio (SNR), degrees of channel reciprocity, and iterations of information reconciliation. In order to increase key match rate of physical layer secret key generation, improved schemes in the steps of channel estimation and sample quantization are proposed respectively. In the channel estimation step, multiple observations of the wireless channels are integrated with a linear processor to provide a synthesized and more accurate estimation of the wireless channel. In the sample quantization step, a magnitude based quantization method with two thresholds is proposed to quantize partial samples, where specific quantization areas are selected to reduce cross-over errors. Significant improvements in key match rate are proven for both schemes in theoretical analysis and numerical simulations. Key match rate can even achieve 100% in both schemes with the assistance of information reconciliation process. In the end, a practical application of physical layer secret key generation is presented, where dynamic keys extracted from the wireless channels are utilized for securing secret data transmission and providing efficient access control

    High-rate uncorrelated bit extraction for shared secret key generation from channel measurements

    Get PDF
    Journal ArticleSecret keys can be generated and shared between two wireless nodes by measuring and encoding radio channel characteristics without ever revealing the secret key to an eavesdropper at a third location. This paper addresses bit extraction, i.e., the extraction of secret key bits from noisy radio channel measurements at two nodes such that the two secret keys reliably agree. Problems include 1) nonsimultaneous directional measurements, 2) correlated bit streams, and 3) low bit rate of secret key generation. This paper introduces high-rate uncorrelated bit extraction (HRUBE), a framework for interpolating, transforming for decorrelation, and encoding channel measurements using a multibit adaptive quantization scheme which allows multiple bits per component. We present an analysis of the probability of bit disagreement in generated secret keys, and we use experimental data to demonstrate the HRUBE scheme and to quantify its experimental performance. As two examples, the implemented HRUBE system can achieve 22 bits per second at a bit disagreement rate of 2.2 percent, or 10 bits per second at a bit disagreement rate of 0.54 percent
    • …
    corecore