99 research outputs found

    Secret Key Generation in Rayleigh Block Fading AWGN Channels under Jamming Attacks

    Get PDF
    Jamming attacks have been shown to disrupt secret key generation (SKG) in systems that exploit the reciprocity of the wireless medium to generate symmetric keys at two remote locations through public discussion. In this study, the use of frequency hopping/spreading in Rayleigh block fading additive white Gaussian noise (BF-AWGN) channels is investigated as a means to counteract such attacks. The competitive interaction between a pair of legitimate users and a jammer is formulated as a zero-sum game and the corresponding Nash equilibria (NE) are characterized analytically and in closed form. It is found that the jammer's optimal strategy is to spread its power across the entire spectrum. On the contrary, the pair of legitimate users should use frequency spreading only in favorable transmission conditions, and frequency hopping otherwise (e.g., low signal to jamming power ratio). Numerical results show that frequency hopping/spreading in BF-AWGN channels is an effective technique for combating jamming attacks in SKG systems; a modest increase of the system bandwidth can substantially increase the SKG rates

    Protecting Secret Key Generation Systems Against Jamming: Energy Harvesting and Channel Hopping Approaches

    Get PDF
    Jamming attacks represent a critical vulnerability for wireless secret key generation (SKG) systems. In this paper, two counter-jamming approaches are investigated for SKG systems: first, the employment of energy harvesting (EH) at the legitimate nodes to turn part of the jamming power into useful communication power, and, second, the use of channel hopping or power spreading in block fading channels to reduce the impact of jamming. In both cases, the adversarial interaction between the pair of legitimate nodes and the jammer is formulated as a two-player zero-sum game and the Nash and Stackelberg equilibria are characterized analytically and in closed form. In particular, in the case of EH receivers, the existence of a critical transmission power for the legitimate nodes allows the full characterization of the game's equilibria and also enables the complete neutralization of the jammer. In the case of channel hopping versus power spreading techniques, it is shown that the jammer's optimal strategy is always power spreading while the legitimate nodes should only use power spreading in the high signal-to-interference ratio (SIR) regime. In the low SIR regime, when avoiding the jammer's interference becomes critical, channel hopping is optimal for the legitimate nodes. Numerical results demonstrate the efficiency of both counter-jamming measures

    Protecting Secret Key Generation Systems Against Jamming: Energy Harvesting and Channel Hopping Approaches

    Get PDF
    Jamming attacks represent a critical vulnerability for wireless secret key generation (SKG) systems. In this paper, two counter-jamming approaches are investigated for SKG systems: first, the employment of energy harvesting (EH) at the legitimate nodes to turn part of the jamming power into useful communication power, and, second, the use of channel hopping or power spreading in block fading channels to reduce the impact of jamming. In both cases, the adversarial interaction between the pair of legitimate nodes and the jammer is formulated as a two-player zero-sum game and the Nash and Stackelberg equilibria are characterized analytically and in closed form. In particular, in the case of EH receivers, the existence of a critical transmission power for the legitimate nodes allows the full characterization of the game's equilibria and also enables the complete neutralization of the jammer. In the case of channel hopping versus power spreading techniques, it is shown that the jammer's optimal strategy is always power spreading while the legitimate nodes should only use power spreading in the high signal-to-interference ratio (SIR) regime. In the low SIR regime, when avoiding the jammer's interference becomes critical, channel hopping is optimal for the legitimate nodes. Numerical results demonstrate the efficiency of both counter-jamming measures

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Physical-Layer Security Enhancement in Wireless Communication Systems

    Get PDF
    Without any doubt, wireless infrastructures and services have fundamental impacts on every aspect of our lives. Despite of their popularities, wireless communications are vulnerable to various attacks due to the open nature of radio propagation. In fact, communication security in wireless networks is becoming more critical than ever. As a solution, conventional cryptographic techniques are deployed on upper layers of network protocols. Along with direct attacks from lower layer, wireless security challenges come with the rapid evolution of sophisticated decipher techniques. Conventional security mechanisms are not necessarily effective against potential attacks from the open wireless environment anymore. As an alternative, physical-layer(PHY) security, utilizing unique features from lower layer, becomes a new research focus for many wireless communication systems. In this thesis, three mechanisms for PHY security enhancement are investigated. Beginning with a discussion on the security vulnerability in highly standardized infrastructures, the thesis proposed a time domain scrambling scheme of orthogonal frequency division multiplexing (OFDM) system to improve the PHY security. The method relies on secretly scrambling each OFDM symbol in time domain, resulting in constellation transformation in frequency domain, to hide transmission features. As a complement to existing secrecy capacity maximization based optimal cooperative jamming systems, a security strategy based on the compromised secrecy region (CSR) minimization in cooperative jamming is then proposed when instantaneous channel state information(CSI) is not available. The optimal parameters of the jammer are derived to minimize the CSR which exhibits high secrecy outage probability. At last, security enhancement of OFDM system in cooperative networks is also investigated. The function selection strategies of cooperative nodes are studied. Our approach is capable of enhancing the security of broadband communications by selecting the proper function of each cooperative node. Numerical results demonstrate the feasibility of three proposed physical layer security mechanisms by examining the communication reliability, achievable CSR and secrecy capacity respectively

    Authenticated secret key generation in delay-constrained wireless systems

    Get PDF
    With the emergence of 5G low-latency applications, such as haptics and V2X, low-complexity and low-latency security mechanisms are needed. Promising lightweight mechanisms include physical unclonable functions (PUF) and secret key generation (SKG) at the physical layer, as considered in this paper. In this framework, we propose (i) a zero round trip time (0-RTT) resumption authentication protocol combining PUF and SKG processes, (ii) a novel authenticated encryption (AE) using SKG, and (iii) pipelining of the AE SKG and the encrypted data transfer in order to reduce latency. Implementing the pipelining at PHY, we investigate a parallel SKG approach for multi-carrier systems, where a subset of the subcarriers are used for SKG and the rest for data transmission. The optimal solution to this PHY resource allocation problem is identified under security, power, and delay constraints, by formulating the subcarrier scheduling as a subset-sum 0−1 knapsack optimization. A heuristic algorithm of linear complexity is proposed and shown to incur negligible loss with respect to the optimal dynamic programming solution. All of the proposed mechanisms have the potential to pave the way for a new breed of latency aware security protocols

    Physical layer security for IoT applications

    Get PDF
    The increasing demands for Internet of things (IoT) applications and the tremendous increase in the volume of IoT generated data bring novel challenges for the fifth generation (5G) network. Verticals such as e-Health, vehicle to everything (V2X) and unmanned aerial vehicles (UAVs) require solutions that can guarantee low latency, energy efficiency,massive connectivity, and high reliability. In particular, finding strong security mechanisms that satisfy the above is of central importance for bringing the IoT to life. In this regards, employing physical layer security (PLS) methods could be greatly beneficial for IoT networks. While current security solutions rely on computational complexity, PLS is based on information theoretic proofs. By removing the need for computational power, PLS is ideally suited for resource constrained devices. In detail, PLS can ensure security using the inherit randomness already present in the physical channel. Promising schemes from the physical layer include physical unclonable functions (PUFs), which are seen as the hardware fingerprint of a device, and secret key generation (SKG) from wireless fading coefficients, which provide the wireless fingerprint of the communication channel between devices. The present thesis develops several PLS-based techniques that pave the way for a new breed of latency-aware, lightweight, security protocols. In particular, the work proposes: i) a fast multi-factor authentication solution with verified security properties based on PUFs, proximity detection and SKG; ii) an authenticated encryption SKG approach that interweaves data transmission and key generation; and, iii) a set of countermeasures to man-in-the-middle and jamming attacks. Overall, PLS solutions show promising performance, especially in the context of IoT applications, therefore, the advances in this thesis should be considered for beyond-5G networks

    Physical layer security solutions against passive and colluding eavesdroppers in large wireless networks and impulsive noise environments

    Get PDF
    Wireless networks have experienced rapid evolutions toward sustainability, scalability and interoperability. The digital economy is driven by future networked societies to a more holistic community of intelligent infrastructures and connected services for a more sustainable and smarter society. Furthermore, an enormous amount of sensitive and confidential information, e.g., medical records, electronic media, financial data, and customer files, is transmitted via wireless channels. The implementation of higher layer key distribution and management was challenged by the emergence of these new advanced systems. In order to resist various malicious abuses and security attacks, physical layer security (PLS) has become an appealing alternative. The basic concept behind PLS is to exploit the characteristics of wireless channels for the confidentiality. Its target is to blind the eavesdroppers such that they cannot extract any confidential information from the received signals. This thesis presents solutions and analyses to improve the PLS in wireless networks. In the second chapter, we investigate the secrecy capacity performance of an amplify-andforward (AF) dual-hop network for both distributed beamforming (DBF) and opportunistic relaying (OR) techniques. We derive the capacity scaling for two large sets; trustworthy relays and untrustworthy aggressive relays cooperating together with a wire-tapper aiming to intercept the message. We show that the capacity scaling in the DBF is lower bounded by a value which depends on the ratio between the number of the trustworthy and the untrustworthy aggressive relays, whereas the capacity scaling of OR is upper bounded by a value depending on the number of relays as well as the signal to noise ratio (SNR). In the third chapter, we propose a new location-based multicasting technique, for dual phase AF large networks, aiming to improve the security in the presence of non-colluding passive eavesdroppers. We analytically demonstrate that the proposed technique increases the security by decreasing the probability of re-choosing a sector that has eavesdroppers, for each transmission time. Moreover, we also show that the secrecy capacity scaling of our technique is the same as for broadcasting. Hereafter, the lower and upper bounds of the secrecy outage probability are calculated, and it is shown that the security performance is remarkably enhanced, compared to the conventional multicasting technique. In the fourth chapter, we propose a new cooperative protocol, for dual phase amplify-andforward large wireless sensor networks, aiming to improve the transmission security while taking into account the limited capabilities of the sensor nodes. In such a network, a portion of the K relays can be potential passive eavesdroppers. To reduce the impact of these untrustworthy relays on the network security, we propose a new transmission protocol, where the source agrees to share with the destination a given channel state information (CSI) of source-trusted relay-destination link to encode the message. Then, the source will use this CSI again to map the right message to a certain sector while transmitting fake messages to the other sectors. Adopting such a security protocol is promising because of the availability of a high number of cheap electronic sensors with limited computational capabilities. For the proposed scheme, we derived the secrecy outage probability (SOP) and demonstrated that the probability of receiving the right encoded information by an untrustworthy relay is inversely proportional to the number of sectors. We also show that the aggressive behavior of cooperating untrusted relays is not effective compared to the case where each untrusted relay is trying to intercept the transmitted message individually. Fifth and last, we investigate the physical layer security performance over Rayleigh fading channels in the presence of impulsive noise, as encountered, for instance, in smart grid environments. For this scheme, secrecy performance metrics were considered with and without destination assisted jamming at the eavesdropper’s side. From the obtained results, it is verified that the SOP, without destination assisted jamming, is flooring at high signal-to-noise-ratio values and that it can be significantly improved with the use of jamming
    • …
    corecore