7,310 research outputs found

    Tapping eavesdropper designs against physical layer secret key in point-to-point fiber communications

    Get PDF
    With the growing demand for service access and data transmission, security issues in optical fiber systems have become increasingly important and the subject of increased research. Physical layer secret key generation (PL-SKG), which leverages the random but common channel properties at legitimate parties, has been shown to be a secure, low-cost, and easily deployed technique as opposed to computational-based cryptography, quantum, and chaos key methods that rely on precise equipment. However, the eavesdropper (Eve) potential for current PL-SKG in fiber communications has been overlooked by most studies to date. Unlike wireless communications, where the randomness comes from the spatial multi-paths that cannot be all captured by Eves, in fiber communications, all the randomness(from transmitted random pilots or channel randomness) is contained in the signals transmitted inside the fiber. This, therefore, enables a tapping Eve to reconstruct the common features of legitimate users from its received signals, and further decrypt the featured-based secret keys. To implement this idea, we designed two Eve schemes against polarization mode distortion (PMD) based PL-SKG and the two-way cross multiplication based PL-SKG. The simulation results show that our proposed Eves can successfully reconstruct the legitimate common feature and the secret key relied upon, leading to secret key rate (SKR) reductions of between three and four orders of magnitude in the PL-SKG schemes studied. As a result, we reveal and demonstrate a novel eavesdropping potential to provide challenges for current physical layer secret key designs. We hope to provide more insightful vision and critical evaluation on the design of new physical layer secret key schemes in optical fiber links, to provide more comprehensively secure, and intelligent optical network

    Tapping eavesdropper designs against physical layer secret key in point-to-point fiber communications

    Get PDF
    With the growing demand for service access and data transmission, security issues in optical fiber systems have become increasingly important and the subject of increased research. Physical layer secret key generation (PL-SKG), which leverages the random but common channel properties at legitimate parties, has been shown to be a secure, low-cost, and easily deployed technique as opposed to computational-based cryptography, quantum, and chaos key methods that rely on precise equipment. However, the eavesdropper (Eve) potential for current PL-SKG in fiber communications has been overlooked by most studies to date. Unlike wireless communications, where the randomness comes from the spatial multi-paths that cannot be all captured by Eves, in fiber communications, all the randomness (from transmitted random pilots or channel randomness) is contained in the signals transmitted inside the fiber. This, therefore, enables a tapping Eve to reconstruct the common features of legitimate users from its received signals, and further decrypt the featured-based secret keys. To implement this idea, we designed two Eve schemes against polarization mode distortion (PMD) based PL-SKG and the two-way cross multiplication based PL-SKG. The simulation results show that our proposed Eves can successfully reconstruct the legitimate common feature and the secret key relied upon, leading to secret key rate (SKR) reductions of between three and four orders of magnitude in the PL-SKG schemes studied. As a result, we reveal and demonstrate a novel eavesdropping potential to provide challenges for current physical layer secret key designs. We hope to provide more insightful vision and critical evaluation on the design of new physical layer secret key schemes in optical fiber links, to provide more comprehensively secure, and intelligent optical networks.European Union funding: 101008280 (DIOR) and UK Royal Society Grant: IES\R3\223068

    Dynamic Polymorphic Reconfiguration to Effectively “CLOAK” a Circuit’s Function

    Get PDF
    Today\u27s society has become more dependent on the integrity and protection of digital information used in daily transactions resulting in an ever increasing need for information security. Additionally, the need for faster and more secure cryptographic algorithms to provide this information security has become paramount. Hardware implementations of cryptographic algorithms provide the necessary increase in throughput, but at a cost of leaking critical information. Side Channel Analysis (SCA) attacks allow an attacker to exploit the regular and predictable power signatures leaked by cryptographic functions used in algorithms such as RSA. In this research the focus on a means to counteract this vulnerability by creating a Critically Low Observable Anti-Tamper Keeping Circuit (CLOAK) capable of continuously changing the way it functions in both power and timing. This research has determined that a polymorphic circuit design capable of varying circuit power consumption and timing can protect a cryptographic device from an Electromagnetic Analysis (EMA) attacks. In essence, we are effectively CLOAKing the circuit functions from an attacker

    Quantum information processing with space-division multiplexing optical fibres

    Full text link
    The optical fibre is an essential tool for our communication infrastructure since it is the main transmission channel for optical communications. The latest major advance in optical fibre technology is spatial division multiplexing (SDM), where new fibre designs and components establish multiple co-existing data channels based on light propagation over distinct transverse optical modes. Simultaneously, there have been many recent developments in the field of quantum information processing (QIP), with novel protocols and devices in areas such as computing, communication and metrology. Here, we review recent works implementing QIP protocols with SDM optical fibres, and discuss new possibilities for manipulating quantum systems based on this technology.Comment: Originally submitted version. Please see published version for improved layout, new tables and updated references following review proces

    Cross-layer key establishment protocols for wireless devices

    Full text link
    There are some problems in existing key establishment protocols. To alleviate these problems, in our thesis, we designed a few cross-layer key establishment protocols by cooperatively using the characteristics of higher layers and physical layer. Additionally, the security and performance analyses show that our protocols perform better than others.<br /
    • 

    corecore