78,189 research outputs found

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    BAN-GZKP: Optimal Zero Knowledge Proof based Scheme for Wireless Body Area Networks

    Get PDF
    BANZKP is the best to date Zero Knowledge Proof (ZKP) based secure lightweight and energy efficient authentication scheme designed for Wireless Area Network (WBAN). It is vulnerable to several security attacks such as the replay attack, Distributed Denial-of-Service (DDoS) attacks at sink and redundancy information crack. However, BANZKP needs an end-to-end authentication which is not compliant with the human body postural mobility. We propose a new scheme BAN-GZKP. Our scheme improves both the security and postural mobility resilience of BANZKP. Moreover, BAN-GZKP uses only a three-phase authentication which is optimal in the class of ZKP protocols. To fix the security vulnerabilities of BANZKP, BAN-GZKP uses a novel random key allocation and a Hop-by-Hop authentication definition. We further prove the reliability of our scheme to various attacks including those to which BANZKP is vulnerable. Furthermore, via extensive simulations we prove that our scheme, BAN-GZKP, outperforms BANZKP in terms of reliability to human body postural mobility for various network parameters (end-to-end delay, number of packets exchanged in the network, number of transmissions). We compared both schemes using representative convergecast strategies with various transmission rates and human postural mobility. Finally, it is important to mention that BAN-GZKP has no additional cost compared to BANZKP in terms memory, computational complexity or energy consumption

    Secret Key Generation Based on AoA Estimation for Low SNR Conditions

    Full text link
    In the context of physical layer security, a physical layer characteristic is used as a common source of randomness to generate the secret key. Therefore an accurate estimation of this characteristic is the core for reliable secret key generation. Estimation of almost all the existing physical layer characteristic suffer dramatically at low signal to noise (SNR) levels. In this paper, we propose a novel secret key generation algorithm that is based on the estimated angle of arrival (AoA) between the two legitimate nodes. Our algorithm has an outstanding performance at very low SNR levels. Our algorithm can exploit either the Azimuth AoA to generate the secret key or both the Azimuth and Elevation angles to generate the secret key. Exploiting a second common source of randomness adds an extra degree of freedom to the performance of our algorithm. We compare the performance of our algorithm to the algorithm that uses the most commonly used characteristics of the physical layer which are channel amplitude and phase. We show that our algorithm has a very low bit mismatch rate (BMR) at very low SNR when both channel amplitude and phase based algorithm fail to achieve an acceptable BMR

    A robust self-organized public key management for mobile ad hoc networks

    Get PDF
    A mobile ad hoc network (MANET) is a self-organized wireless network where mobile nodes can communicate with each other without the use of any existing network infrastructure or centralized administration. Trust establishment and management are essential for any security framework of MANETs. However, traditional solutions to key management through accessing trusted authorities or centralized servers are infeasible for MANETs due to the absence of infrastructure, frequent mobility, and wireless link instability. In this paper, we propose a robust self-organized, public key management for MANETs. The proposed scheme relies on establishing a small number of trust relations between neighboring nodes during the network initialization phase. Experiences gained as a result of successful communications and node mobility through the network enhance the formation of a web of trust between mobile nodes. The proposed scheme allows each user to create its public key and the corresponding private key, to issue certificates to neighboring nodes, and to perform public key authentication through at least two independent certificate chains without relying on any centralized authority. A measure of the communications cost of the key distribution process has been proposed. Simulation results show that the proposed scheme is robust and efficient in the mobility environment of MANET and against malicious node attacks

    A distributed key establishment scheme for wireless mesh networks using identity-based cryptography

    Get PDF
    In this paper, we propose a secure and efficient key establishment scheme designed with respect to the unique requirements of Wireless Mesh Networks. Our security model is based on Identity-based key establishment scheme without the utilization of a trusted authority for private key operations. Rather, this task is performed by a collaboration of users; a threshold number of users come together in a coalition so that they generate the private key. We performed simulative performance evaluation in order to show the effect of both the network size and the threshold value. Results show a tradeoff between resiliency and efficiency: increasing the threshold value or the number of mesh nodes also increases the resiliency but negatively effects the efficiency. For threshold values smaller than 8 and for number of mesh nodes in between 40 and 100, at least 90% of the mesh nodes can compute their private keys within at most 70 seconds. On the other hand, at threshold value 8, an increase in the number of mesh nodes from 40 to 100 results in 25% increase in the rate of successful private key generations
    corecore