13,407 research outputs found

    Transparent code authentication at the processor level

    Get PDF
    The authors present a lightweight authentication mechanism that verifies the authenticity of code and thereby addresses the virus and malicious code problems at the hardware level eliminating the need for trusted extensions in the operating system. The technique proposed tightly integrates the authentication mechanism into the processor core. The authentication latency is hidden behind the memory access latency, thereby allowing seamless on-the-fly authentication of instructions. In addition, the proposed authentication method supports seamless encryption of code (and static data). Consequently, while providing the software users with assurance for authenticity of programs executing on their hardware, the proposed technique also protects the software manufacturers’ intellectual property through encryption. The performance analysis shows that, under mild assumptions, the presented technique introduces negligible overhead for even moderate cache sizes

    Deployment of Keystroke Analysis on a Smartphone

    Get PDF
    The current security on mobile devices is often limited to the Personal Identification Number (PIN), a secretknowledge based technique that has historically demonstrated to provide ineffective protection from misuse. Unfortunately, with the increasing capabilities of mobile devices, such as online banking and shopping, the need for more effective protection is imperative. This study proposes the use of two-factor authentication as an enhanced technique for authentication on a Smartphone. Through utilising secret-knowledge and keystroke analysis, it is proposed a stronger more robust mechanism will exist. Whilst keystroke analysis using mobile devices have been proven effective in experimental studies, these studies have only utilised the mobile device for capturing samples rather than the more computationally challenging task of performing the actual authentication. Given the limited processing capabilities of mobile devices, this study focuses upon deploying keystroke analysis to a mobile device utilising numerous pattern classifiers. Given the trade-off with computation versus performance, the results demonstrate that the statistical classifiers are the most effective

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    Formal Verification of Safety Properties for Ownership Authentication Transfer Protocol

    Full text link
    In ubiquitous computing devices, users tend to store some valuable information in their device. Even though the device can be borrowed by the other user temporarily, it is not safe for any user to borrow or lend the device as it may cause private data of the user to be public. To safeguard the user data and also to preserve user privacy we propose and model the technique of ownership authentication transfer. The user who is willing to sell the device has to transfer the ownership of the device under sale. Once the device is sold and the ownership has been transferred, the old owner will not be able to use that device at any cost. Either of the users will not be able to use the device if the process of ownership has not been carried out properly. This also takes care of the scenario when the device has been stolen or lost, avoiding the impersonation attack. The aim of this paper is to model basic process of proposed ownership authentication transfer protocol and check its safety properties by representing it using CSP and model checking approach. For model checking we have used a symbolic model checker tool called NuSMV. The safety properties of ownership transfer protocol has been modeled in terms of CTL specification and it is observed that the system satisfies all the protocol constraint and is safe to be deployed.Comment: 16 pages, 7 figures,Submitted to ADCOM 201

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    Modelling and simulation of a biometric identity-based cryptography

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Biometric identity-based cryptography for e-Government environment

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols
    corecore