10 research outputs found

    On the Optimal Precoding for MIMO Gaussian Wire-Tap Channels

    Full text link
    We consider the problem of finding secrecy rate of a multiple-input multiple-output (MIMO) wire-tap channel. A transmitter, a legitimate receiver, and an eavesdropper are all equipped with multiple antennas. The channel states from the transmitter to the legitimate user and to the eavesdropper are assumed to be known at the transmitter. In this contribution, we address the problem of finding the optimal precoder/transmit covariance matrix maximizing the secrecy rate of the given wiretap channel. The problem formulation is shown to be equivalent to a difference of convex functions programming problem and an efficient algorithm for addressing this problem is developed.Comment: Published in Proceedings of the Tenth International Symposium on Wireless Communication Systems (ISWCS 2013), Ilmenau, Germany, August 201

    On the Secrecy Capacity of MIMO Wiretap Channels: Convex Reformulation and Efficient Numerical Methods

    Full text link
    This paper presents novel numerical approaches to finding the secrecy capacity of the multiple-input multiple-output (MIMO) wiretap channel subject to multiple linear transmit covariance constraints, including sum power constraint, per antenna power constraints and interference power constraint. An analytical solution to this problem is not known and existing numerical solutions suffer from slow convergence rate and/or high per-iteration complexity. Deriving computationally efficient solutions to the secrecy capacity problem is challenging since the secrecy rate is expressed as a difference of convex functions (DC) of the transmit covariance matrix, for which its convexity is only known for some special cases. In this paper we propose two low-complexity methods to compute the secrecy capacity along with a convex reformulation for degraded channels. In the first method we capitalize on the accelerated DC algorithm which requires solving a sequence of convex subproblems, for which we propose an efficient iterative algorithm where each iteration admits a closed-form solution. In the second method, we rely on the concave-convex equivalent reformulation of the secrecy capacity problem which allows us to derive the so-called partial best response algorithm to obtain an optimal solution. Notably, each iteration of the second method can also be done in closed form. The simulation results demonstrate a faster convergence rate of our methods compared to other known solutions. We carry out extensive numerical experiments to evaluate the impact of various parameters on the achieved secrecy capacity

    An Algorithm for Global Maximization of Secrecy Rates in Gaussian MIMO Wiretap Channels

    Full text link
    Optimal signaling for secrecy rate maximization in Gaussian MIMO wiretap channels is considered. While this channel has attracted a significant attention recently and a number of results have been obtained, including the proof of the optimality of Gaussian signalling, an optimal transmit covariance matrix is known for some special cases only and the general case remains an open problem. An iterative custom-made algorithm to find a globally-optimal transmit covariance matrix in the general case is developed in this paper, with guaranteed convergence to a \textit{global} optimum. While the original optimization problem is not convex and hence difficult to solve, its minimax reformulation can be solved via the convex optimization tools, which is exploited here. The proposed algorithm is based on the barrier method extended to deal with a minimax problem at hand. Its convergence to a global optimum is proved for the general case (degraded or not) and a bound for the optimality gap is given for each step of the barrier method. The performance of the algorithm is demonstrated via numerical examples. In particular, 20 to 40 Newton steps are already sufficient to solve the sufficient optimality conditions with very high precision (up to the machine precision level), even for large systems. Even fewer steps are required if the secrecy capacity is the only quantity of interest. The algorithm can be significantly simplified for the degraded channel case and can also be adopted to include the per-antenna power constraints (instead or in addition to the total power constraint). It also solves the dual problem of minimizing the total power subject to the secrecy rate constraint.Comment: accepted by IEEE Transactions on Communication

    Algorithms for Globally-Optimal Secure Signaling over Gaussian MIMO Wiretap Channels Under Interference Constraints

    Full text link
    Multi-user Gaussian MIMO wiretap channel is considered under interference power constraints (IPC), in addition to the total transmit power constraint (TPC). Algorithms for \textit{global} maximization of its secrecy rate are proposed. Their convergence to the secrecy capacity is rigorously proved and a number of properties are established analytically. Unlike known algorithms, the proposed ones are not limited to the MISO case and are proved to converge to a \textit{global} rather than local optimum in the general MIMO case, even when the channel is not degraded. In practice, the convergence is fast as only a small to moderate number of Newton steps is required to achieve a high precision level. The interplay of TPC and IPC is shown to result in an unusual property when an optimal point of the max-min problem does not provide an optimal transmit covariance matrix in some (singular) cases. To address this issue, an algorithm is developed to compute an optimal transmit covariance matrix in those singular cases. It is shown that this algorithm also solves the dual (nonconvex) problems of \textit{globally} minimizing the total transmit power subject to the secrecy and interference constraints; it provides the minimum transmit power and respective signaling strategy needed to achieve the secrecy capacity, hence allowing power savings.Comment: accepted for publicatio

    Secrecy rate maximization for MIMO Gaussian wiretap channels with multiple eavesdroppers via alternating matrix POTDC

    No full text

    Advanced array signal processing algorithms for multi-dimensional parameter estimation

    Get PDF
    Multi-dimensional high-resolution parameter estimation is a fundamental problem in a variety of array signal processing applications, including radar, mobile communications, multiple-input multiple-output (MIMO) channel estimation, and biomedical imaging. The objective is to estimate the frequency parameters of noise-corrupted multi-dimensional harmonics that are sampled on a multi-dimensional grid. Among the proposed parameter estimation algorithms to solve this problem, multi-dimensional (R-D) ESPRIT-type algorithms have been widely used due to their computational efficiency and their simplicity. Their performance in various scenarios has been objectively evaluated by means of an analytical performance assessment framework. Recently, a relatively new class of parameter estimators based on sparse signal reconstruction has gained popularity due to their robustness under challenging conditions such as a small sample size or strong signal correlation. A common approach towards further improving the performance of parameter estimation algorithms is to exploit prior knowledge on the structure of the signals. In this thesis, we develop enhanced versions of R-D ESPRIT-type algorithms and the relatively new class of sparsity-based parameter estimation algorithms by exploiting the multi-dimensional structure of the signals and the statistical properties of strictly non-circular (NC) signals. First, we derive analytical expressions for the gain from forward-backward averaging and tensor-based processing in R-D ESPRIT-type and R-D Tensor-ESPRIT-type algorithms for the special case of two sources. This is accomplished by simplifying the generic analytical MSE expressions from the performance analysis of R-D ESPRIT-type algorithms. The derived expressions allow us to identify the parameter settings, e.g., the number of sensors, the signal correlation, and the source separation, for which both gains are most pronounced or no gain is achieved. Second, we propose the generalized least squares (GLS) algorithm to solve the overdetermined shift invariance equation in R-D ESPRIT-type algorithms. GLS directly incorporates the statistics of the subspace estimation error into the shift invariance solution through its covariance matrix, which is found via a first-order perturbation expansion. To objectively assess the estimation accuracy, we derive performance analysis expressions for the mean square error (MSE) of GLS-based ESPRIT-type algorithms, which are asymptotic in the effective SNR, i.e., the results become exact for a high SNR or a small sample size. Based on the performance analysis, we show that the simplified MSE expressions of GLS-based 1-D ESPRIT-type algorithms for a single source and two sources can be transformed into the corresponding Cramer-Rao bound (CRB) expressions, which provide a lower limit on the estimation error. Thereby, ESPRIT-type algorithms can become asymptotically efficient, i.e., they asymptotically achieve the CRB. Numerical simulations show that this can also be the case for more than two sources. In the third contribution, we derive matrix-based and tensor-based R-D NC ESPRIT-type algorithms for multi-dimensional strictly non-circular signals, where R-D NC Tensor-ESPRIT-type algorithms exploit both the multi-dimensional structure and the strictly non-circular structure of the signals. Exploiting the NC signal structure by means of a preprocessing step leads to a virtual doubling of the original sensor array, which provides an improved estimation accuracy and doubles the number of resolvable signals. We derive an analytical performance analysis and compute simplified MSE expressions for a single source and two sources. These expressions are used to analytically compute the NC gain for these cases, which has so far only been studied via Monte-Carlo simulations. We additionally consider spatial smoothing preprocessing for R-D ESPRIT-type algorithms, which has been widely used to improve the estimation performance for highly correlated signals or a small sample size. Once more, we derive performance analysis expressions for R-D ESPRIT-type algorithms and their corresponding NC versions with spatial smoothing and derive the optimal number of subarrays for spatial smoothing that minimizes the MSE for a single source. In the next part, we focus on the relatively new concept of parameter estimation via sparse signal reconstruction (SSR), in which the sparsity of the received signal power spectrum in the spatio-temporal domain is exploited. We develop three NC SSR-based parameter estimation algorithms for strictly noncircular sources and show that the benefits of exploiting the signals’ NC structure can also be achieved via sparse reconstruction. We develop two grid-based NC SSR algorithms with a low-complexity off-grid estimation procedure, and a gridless NC SSR algorithm based on atomic norm minimization. As the final contribution of this thesis, we derive the deterministic R-D NC CRB for strictly non-circular sources, which serves as a benchmark for the presented R-D NC ESPRIT-type algorithms and the NC SSR-based parameter estimation algorithms. We show for the special cases of, e.g., full coherence, a single snapshot, or a single strictly non-circular source, that the deterministic R-D NC CRB reduces to the existing deterministic R-D CRB for arbitrary signals. Therefore, no NC gain can be achieved in these cases. For the special case of two closely-spaced NC sources, we simplify the NC CRB expression and compute the NC gain for two closely-spaced NC signals. Finally, its behavior in terms of the physical parameters is studied to determine the parameter settings that provide the largest NC gain.Die hochauflösende ParameterschĂ€tzung fĂŒr mehrdimensionale Signale findet Anwendung in vielen Bereichen der Signalverarbeitung in Mehrantennensystemen. Zu den Anwendungsgebieten zĂ€hlen beispielsweise Radar, die Mobilkommunikation, die KanalschĂ€tzung in multiple-input multiple-output (MIMO)-Systemen und bildgebende Verfahren in der Biosignalverarbeitung. In letzter Zeit sind eine Vielzahl von Algorithmen zur ParameterschĂ€tzung entwickelt worden, deren SchĂ€tzgenauigkeit durch eine analytische Beschreibung der LeistungsfĂ€higkeit objektiv bewertet werden kann. Eine verbreitete Methode zur Verbesserung der SchĂ€tzgenauigkeit von ParameterschĂ€tzverfahren ist die Ausnutzung von Vorwissen bezĂŒglich der Signalstruktur. In dieser Arbeit werden mehrdimensionale ESPRIT-Verfahren als Beispiel fĂŒr Unterraum-basierte Verfahren entwickelt und analysiert, die explizit die mehrdimensionale Signalstruktur mittels Tensor-Signalverarbeitung ausnutzt und die statistischen Eigenschaften von nicht-zirkulĂ€ren Signalen einbezieht. Weiterhin werden neuartige auf Signalrekonstruktion basierende Algorithmen vorgestellt, die die nicht-zirkulĂ€re Signalstruktur bei der Rekonstruktion ausnutzen. Die vorgestellten Verfahren ermöglichen eine deutlich verbesserte SchĂ€tzgĂŒte und verdoppeln die Anzahl der auflösbaren Signale. Die Vielzahl der ForschungsbeitrĂ€ge in dieser Arbeit setzt sich aus verschiedenen Teilen zusammen. Im ersten Teil wird die analytische Beschreibung der LeistungsfĂ€higkeit von Matrix-basierten und Tensor-basierten ESPRIT-Algorithmen betrachtet. Die Tensor-basierten Verfahren nutzen explizit die mehrdimensionale Struktur der Daten aus. Es werden fĂŒr beide Algorithmenarten vereinfachte analytische AusdrĂŒcke fĂŒr den mittleren quadratischen SchĂ€tzfehler fĂŒr zwei Signalquellen hergeleitet, die lediglich von den physikalischen Parametern, wie zum Beispiel die Anzahl der Antennenelemente, das Signal-zu-Rausch-VerhĂ€ltnis, oder die Anzahl der Messungen, abhĂ€ngen. Ein Vergleich dieser AusdrĂŒcke ermöglicht die Berechnung einfacher AusdrĂŒcke fĂŒr den SchĂ€tzgenauigkeitsgewinn durch den forward-backward averaging (FBA)-Vorverarbeitungsschritt und die Tensor-Signalverarbeitung, die die analytische AbhĂ€ngigkeit von den physikalischen Parametern enthalten. Im zweiten Teil entwickeln wir einen neuartigen general least squares (GLS)-Ansatz zur Lösung der Verschiebungs-Invarianz-Gleichung, die die Grundlage der ESPRIT-Algorithmen darstellt. Der neue Lösungsansatz berĂŒcksichtigt die statistische Beschreibung des Fehlers bei der UnterraumschĂ€tzung durch dessen Kovarianzmatrix und ermöglicht unter bestimmten Annahmen eine optimale Lösung der Invarianz-Gleichung. Mittels einer Performanzanalyse der GLS-basierten ESPRIT-Verfahren und der Vereinfachung der analytischen AusdrĂŒcke fĂŒr den SchĂ€tzfehler fĂŒr eine Signalquelle und zwei zeitlich unkorrelierte Signalquellen wird gezeigt, dass die Cramer-Rao-Schranke, eine untere Schranke fĂŒr die Varianz eines SchĂ€tzers, erreicht werden kann. Im nĂ€chsten Teil werden Matrix-basierte und Tensor-basierte ESPRIT-Algorithmen fĂŒr nicht-zirkulĂ€re Signalquellen vorgestellt. Unter Ausnutzung der Signalstruktur gelingt es, die SchĂ€tzgenauigkeit zu erhöhen und die doppelte Anzahl an Quellen aufzulösen. Dabei ermöglichen die vorgeschlagenen Tensor-ESPRIT-Verfahren sogar die gleichzeitige Ausnutzung der mehrdimensionalen Signalstruktur und der nicht-zirkulĂ€re Signalstruktur. Die LeistungsfĂ€higkeit dieser Verfahren wird erneut durch eine analytische Beschreibung objektiv bewertet und SpezialfĂ€lle fĂŒr eine und zwei Quellen betrachtet. Es zeigt sich, dass fĂŒr eine Quelle keinerlei Gewinn durch die nicht-zirkulĂ€re Struktur erzielen lĂ€sst. FĂŒr zwei nicht-zirkulĂ€re Quellen werden vereinfachte AusdrĂŒcke fĂŒr den Gewinn sowohl im Matrixfall also auch im Tensorfall hergeleitet und die AbhĂ€ngigkeit der physikalischen Parameter analysiert. Sind die Signale stark korreliert oder ist die Anzahl der Messdaten sehr gering, kann der spatial smoothing-Vorverarbeitungsschritt mit den verbesserten ESPRIT-Verfahren kombiniert werden. Anhand der Performanzanalyse wird die Anzahl der Mittellungen fĂŒr das spatial smoothing-Verfahren analytisch fĂŒr eine Quelle bestimmt, die den SchĂ€tzfehler minimiert. Der nĂ€chste Teil befasst sich mit einer vergleichsweise neuen Klasse von ParameterschĂ€tzverfahren, die auf der Rekonstruktion ĂŒberlagerter dĂŒnnbesetzter Signale basiert. Als Vorteil gegenĂŒber den Algorithmen, die eine SignalunterraumschĂ€tzung voraussetzen, sind die Rekonstruktionsverfahren verhĂ€ltnismĂ€ĂŸig robust im Falle einer geringen Anzahl zeitlicher Messungen oder einer starken Korrelation der Signale. In diesem Teil der vorliegenden Arbeit werden drei solcher Verfahren entwickelt, die bei der Rekonstruktion zusĂ€tzlich die nicht-zirkulĂ€re Signalstruktur ausnutzen. Dadurch kann auch fĂŒr diese Art von Verfahren eine höhere SchĂ€tzgenauigkeit erreicht werden und eine höhere Anzahl an Signalen rekonstruiert werden. Im letzten Kapitel der Arbeit wird schließlich die Cramer-Rao-Schranke fĂŒr mehrdimensionale nicht-zirkulĂ€re Signale hergeleitet. Sie stellt eine untere Schranke fĂŒr den SchĂ€tzfehler aller Algorithmen dar, die speziell fĂŒr die Ausnutzung dieser Signalstruktur entwickelt wurden. Im Vergleich zur bekannten Cramer-Rao-Schranke fĂŒr beliebige Signale, zeigt sich, dass im Fall von zeitlich kohĂ€renten Signalen, fĂŒr einen Messvektor oder fĂŒr eine Quelle, beide Schranken Ă€quivalent sind. In diesen FĂ€llen kann daher keine Verbesserung der SchĂ€tzgĂŒte erzielt werden. ZusĂ€tzlich wird die Cramer-Rao-Schranke fĂŒr zwei benachbarte nicht-zirkulĂ€re Signalquellen vereinfacht und der maximal mögliche Gewinn in AbhĂ€ngigkeit der physikalischen Parameter analytisch ermittelt. Dieser Ausdruck gilt als Maßstab fĂŒr den erzielbaren Gewinn aller ParameterschĂ€tzverfahren fĂŒr zwei nicht-zirkulĂ€re Signalquellen
    corecore