586 research outputs found

    Anonymity and Information Hiding in Multiagent Systems

    Full text link
    We provide a framework for reasoning about information-hiding requirements in multiagent systems and for reasoning about anonymity in particular. Our framework employs the modal logic of knowledge within the context of the runs and systems framework, much in the spirit of our earlier work on secrecy [Halpern and O'Neill 2002]. We give several definitions of anonymity with respect to agents, actions, and observers in multiagent systems, and we relate our definitions of anonymity to other definitions of information hiding, such as secrecy. We also give probabilistic definitions of anonymity that are able to quantify an observer s uncertainty about the state of the system. Finally, we relate our definitions of anonymity to other formalizations of anonymity and information hiding, including definitions of anonymity in the process algebra CSP and definitions of information hiding using function views.Comment: Replacement. 36 pages. Full version of CSFW '03 paper, submitted to JCS. Made substantial changes to Section 6; added references throughou

    Imitative Follower Deception in Stackelberg Games

    Full text link
    Information uncertainty is one of the major challenges facing applications of game theory. In the context of Stackelberg games, various approaches have been proposed to deal with the leader's incomplete knowledge about the follower's payoffs, typically by gathering information from the leader's interaction with the follower. Unfortunately, these approaches rely crucially on the assumption that the follower will not strategically exploit this information asymmetry, i.e., the follower behaves truthfully during the interaction according to their actual payoffs. As we show in this paper, the follower may have strong incentives to deceitfully imitate the behavior of a different follower type and, in doing this, benefit significantly from inducing the leader into choosing a highly suboptimal strategy. This raises a fundamental question: how to design a leader strategy in the presence of a deceitful follower? To answer this question, we put forward a basic model of Stackelberg games with (imitative) follower deception and show that the leader is indeed able to reduce the loss due to follower deception with carefully designed policies. We then provide a systematic study of the problem of computing the optimal leader policy and draw a relatively complete picture of the complexity landscape; essentially matching positive and negative complexity results are provided for natural variants of the model. Our intractability results are in sharp contrast to the situation with no deception, where the leader's optimal strategy can be computed in polynomial time, and thus illustrate the intrinsic difficulty of handling follower deception. Through simulations we also examine the benefit of considering follower deception in randomly generated games
    • …
    corecore