103 research outputs found

    Multi-Agent Reinforcement Learning-Based Buffer-Aided Relay Selection in IRS-Assisted Secure Cooperative Networks

    Get PDF
    This paper proposes a multi-agent deep reinforcement learning-based buffer-aided relay selection scheme for an intelligent reflecting surface (IRS)-assisted secure cooperative network in the presence of an eavesdropper. We consider a practical phase model where both phase shift and reflection amplitude are discrete variables to vary the reflection coefficients of the IRS. Furthermore, we introduce the buffer-aided relay to enhance the secrecy performance, but the use of the buffer leads to the cost of delay. Thus, we aim to maximize either the average secrecy rate with a delay constraint or the throughput with both delay and secrecy constraints, by jointly optimizing the buffer-aided relay selection and the IRS reflection coefficients. To obtain the solution of these two optimization problems, we divide each of the problems into two sub-tasks and then develop a distributed multi-agent reinforcement learning scheme for the two cooperative sub-tasks, each relay node represents an agent in the distributed learning. We apply the distributed reinforcement learning scheme to optimize the IRS reflection coefficients, and then utilize an agent on the source to learn the optimal relay selection based on the optimal IRS reflection coefficients in each iteration. Simulation results show that the proposed learning-based scheme uses an iterative approach to learn from the environment for approximating an optimal solution via the exploration of multiple agents, which outperforms the benchmark schemes

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Secure communication protocol design for buffer-aided relaying systems

    Get PDF
    ζŒ‡ε°Žζ•™ε“‘οΌšε§œγ€€ζš

    Cost-Effective Signal Processing Algorithms for Physical-Layer Security in Wireless Networks

    Get PDF
    Data privacy in traditional wireless communications is accomplished by cryptography techniques at the upper layers of the protocol stack. This thesis aims at contributing to the critical security issue residing in the physical-layer of wireless networks, namely, secrecy rate in various transmission environments. Physical-layer security opens the gate to the exploitation of channel characteristics to achieve data secure transmission. Precoding techniques, as a critical aspect in pre-processing signals prior to transmission has become an effective approach and recently drawn significant attention in the literature. In our research, novel non-linear precoders are designed focusing on the improvement of the physical-layer secrecy rate with consideration of computational complexity as well as the Bit Error Ratio (BER) performance. In the process of designing the precoder, strategies such as Lattice Reduction (LR) and Artificial Noise (AN) are employed to achieve certain design requirements. The deployment and allocation of resources such as relays to assist the transmission also have gained significant interest. In multiple-antenna relay networks, we examine various relay selection criteria with arbitrary knowledge of the channels to the users and the eavesdroppers. Furthermore, we provide novel effective relay selection criteria that can achieve a high secrecy rate performance. More importantly they do not require knowledge of the channels of the eavesdroppers and the interference. Combining the jamming technique with resource allocation of relay networks, we investigate an opportunistic relaying and jamming scheme for Multiple-Input Multiple-Output (MIMO) buffer-aided downlink relay networks. More specifically, a novel Relaying and Jamming Function Selection (RJFS) algorithm as well as a buffer-aided RJFS algorithm are developed along with their ability to achieve a higher secrecy rate. Relying on the proposed relay network, we detail the characteristics of the system, under various relay selection criteria, develop exhaustive search and greedy search-based algorithms, with or without inter-relay Interference Cancellation (IC)
    • …
    corecore