69 research outputs found

    Secrecy rate optimizations for MIMO communication radar

    Get PDF
    In this paper, we investigate transmit beampattern optimization techniques for a multiple-input multiple-output (MIMO) radar in the presence of a legitimate communications receiver and an eavesdropping target. The primary objectives of the radar are to satisfy a certain target detection criterion and to simultaneously communicate safely with a legitimate receiver by maximizing the secrecy rate against the eavesdropping target. Therefore, we consider three optimization problems, namely, target return signal to interference plus noise ratio (SINR) maximization, secrecy rate maximization and transmit power minimization. However, these problems are non-convex due to the non-concavity of the secrecy rate function, which appears in all three optimizations either as the objective function or as a constraint. To solve this issue, we use Taylor series approximation of the non-convex elements through an iterative algorithm, which recasts the problem as a convex problem. Two transmit covariance matrices are designed to detect the target and convey the information safely to the communication receiver. Simulation results are presented to validate the efficiency of the aforementioned optimizations

    Secure Radar-Communication Systems With Malicious Targets: Integrating Radar, Communications and Jamming Functionalities

    Get PDF

    Physical Layer Security in Integrated Sensing and Communication Systems

    Get PDF
    The development of integrated sensing and communication (ISAC) systems has been spurred by the growing congestion of the wireless spectrum. The ISAC system detects targets and communicates with downlink cellular users simultaneously. Uniquely for such scenarios, radar targets are regarded as potential eavesdroppers which might surveil the information sent from the base station (BS) to communication users (CUs) via the radar probing signal. To address this issue, we propose security solutions for ISAC systems to prevent confidential information from being intercepted by radar targets. In this thesis, we firstly present a beamformer design algorithm assisted by artificial noise (AN), which aims to minimize the signal-to-noise ratio (SNR) at the target while ensuring the quality of service (QoS) of legitimate receivers. Furthermore, to reduce the power consumed by AN, we apply the directional modulation (DM) approach to exploit constructive interference (CI). In this case, the optimization problem is designed to maximize the SINR of the target reflected echoes with CI constraints for each CU, while constraining the received symbols at the target in the destructive region. Apart from the separate functionalities of radar and communication systems above, we investigate sensing-aided physical layer security (PLS), where the ISAC BS first emits an omnidirectional waveform to search for and estimate target directions. Then, we formulate a weighted optimization problem to simultaneously maximize the secrecy rate and minimize the Cram\'er-Rao bound (CRB) with the aid of the AN, designing a beampattern with a wide main beam covering all possible angles of targets. The main beam width of the next iteration depends on the optimal CRB. In this way, the sensing and security functionalities provide mutual benefits, resulting in the improvement of mutual performances with every iteration of the optimization, until convergence. Overall, numerical results show the effectiveness of the ISAC security designs through the deployment of AN-aided secrecy rate maximization and CI techniques. The sensing-assisted PLS scheme offers a new approach for obtaining channel information of eavesdroppers, which is treated as a limitation of conventional PLS studies. This design gains mutual benefits in both single and multi-target scenarios

    Secure Dual-Functional Radar-Communication Transmission: Exploiting Interference for Resilience Against Target Eavesdropping

    Get PDF
    We study security solutions for dual-functional radar communication (DFRC) systems, which detect the radar target and communicate with downlink cellular users in millimeter-wave (mmWave) wireless networks simultaneously. Uniquely for such scenarios, the radar target is regarded as a potential eavesdropper which might surveil the information sent from the base station (BS) to communication users (CUs), that is carried by the radar probing signal. Transmit waveform and receive beamforming are jointly designed to maximize the signal-to-interference-plus-noise ratio (SINR) of the radar under the security and power budget constraints. We apply a Directional Modulation (DM) approach to exploit constructive interference (CI), where the known multiuser interference (MUI) can be exploited as a source of useful signal. Moreover, to further deteriorate the eavesdropping signal at the radar target, we utilize destructive interference (DI) by pushing the received symbols at the target towards the destructive region of the signal constellation. Our numerical results verify the effectiveness of the proposed design showing a secure transmission with enhanced performance against benchmark DFRC techniques

    Secure Dual-Functional Radar-Communication Transmission: Exploiting Interference for Resilience Against Target Eavesdropping

    Get PDF
    We study security solutions for dual-functional radar communication (DFRC) systems, which detect the radar target and communicate with downlink cellular users in millimeter-wave (mmWave) wireless networks simultaneously. Uniquely for such scenarios, the radar target is regarded as a potential eavesdropper which might surveil the information sent from the base station (BS) to communication users (CUs), that is carried by the radar probing signal. Transmit waveform and receive beamforming are jointly designed to maximize the signal-to-interference-plus-noise ratio (SINR) of the radar under the security and power budget constraints. We apply a Directional Modulation (DM) approach to exploit constructive interference (CI), where the known multiuser interference (MUI) can be exploited as a source of useful signal. Moreover, to further deteriorate the eavesdropping signal at the radar target, we utilize destructive interference (DI) by pushing the received symbols at the target towards the destructive region of the signal constellation. Our numerical results verify the effectiveness of the proposed design showing a secure transmission with enhanced performance against benchmark DFRC techniques

    Sensing-Assisted Eavesdropper Estimation: An ISAC Breakthrough in Physical Layer Security

    Get PDF
    In this paper, we investigate the sensing-aided physical layer security (PLS) towards Integrated Sensing and Communication (ISAC) systems. A well-known limitation of PLS is the need to have information about potential eavesdroppers (Eves). The sensing functionality of ISAC offers an enabling role here, by estimating the directions of potential Eves to inform PLS. In our approach, the ISAC base station (BS) firstly emits an omnidirectional waveform to search for potential Eves’ directions by employing the combined Capon and approximate maximum likelihood (CAML) technique. Using the resulting information about potential Eves, we formulate secrecy rate expressions, that are a function of the Eves’ estimation accuracy. We then formulate a weighted optimization problem to simultaneously maximize the secrecy rate and minimize the CRB with the aid of the artificial noise (AN), and minimize the CRB of targets’/Eves’ estimation. By taking the possible estimation errors into account, we enforce a beampattern constraint with a wide main beam covering all possible directions of Eves. This implicates that security needs to be enforced in all these directions. By improving estimation accuracy, the sensing and security functionalities provide mutual benefits, resulting in improvement of the mutual performances with every iteration of the optimization, until convergence. Our results avail of these mutual benefits and reveal the usefulness of sensing as an enabler for practical PLS

    Sensing-Assisted Eavesdropper Estimation: An ISAC Breakthrough in Physical Layer Security

    Get PDF
    In this paper, we investigate the sensing-aided physical layer security (PLS) towards Integrated Sensing and Communication (ISAC) systems. A well-known limitation of PLS is the need to have information about potential eavesdroppers (Eves). The sensing functionality of ISAC offers an enabling role here, by estimating the directions of potential Eves to inform PLS. In our approach, the ISAC base station (BS) firstly emits an omnidirectional waveform to search for potential Eves’ directions by employing the combined Capon and approximate maximum likelihood (CAML) technique. Using the resulting information about potential Eves, we formulate secrecy rate expressions, which is a function of the Eves’ estimation accuracy. We then formulate a weighted optimization problem to simultaneously maximize the secrecy rate with the aid of the artificial noise (AN), and minimize the Cramér-Rao Bound (CRB) of targets’/Eves’ estimation. By taking the possible estimation errors into account, we enforce a beampattern constraint with a wide main beam covering all possible directions of Eves. This implicates that security needs to be enforced in all these directions. By improving estimation accuracy, the sensing and security functionalities provide mutual benefits, resulting in improvement of the mutual performances with every iteration of the optimization, until convergence. Our results avail of these mutual benefits and reveal the usefulness of sensing as an enabler for practical PLS
    • …
    corecore