24 research outputs found

    Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming

    Get PDF
    In this paper, we investigate the secure transmission in wireless sensor networks (WSNs) consisting of one multiple-antenna base station (BS), multiple single-antenna legitimate users, one single-antenna eavesdropper and one multiple-antenna cooperative jammer. In an effort to reduce the scheduling complexity and extend the battery lifetime of the sensor nodes, the switch-and-stay combining (SSC) scheduling scheme is exploited over the sensor nodes. Meanwhile, transmit antenna selection (TAS) is employed at the BS and cooperative jamming (CJ) is adopted at the jammer node, aiming at achieving a satisfactory secrecy performance. Moreover, depending on whether the jammer node has the global channel state information (CSI) of both the legitimate channel and the eavesdropper's channel, it explores a zero-forcing beamforming (ZFB) scheme or a null-space artificial noise (NAN) scheme to confound the eavesdropper while avoiding the interference to the legitimate user. Building on this, we propose two novel hybrid secure transmission schemes, termed TAS-SSC-ZFB and TAS-SSC-NAN, for WSNs. We then derive the exact closed-form expressions for the secrecy outage probability and the effective secrecy throughput of both schemes to characterize the secrecy performance. Using these closed-form expressions, we further determine the optimal switching threshold and obtain the optimal power allocation factor between the BS and jammer node for both schemes to minimize the secrecy outage probability, while the optimal secrecy rate is decided to maximize the effective secrecy throughput for both schemes. Numerical results are provided to verify the theoretical analysis and illustrate the impact of key system parameters on the secrecy performance.This work was supported by the National Science Foundation of China (No. 61501507), and the Jiangsu Provincial Natural Science Foundation of China (No. BK20150719). The work of Nan Yang is supported by the Australian Research Council Discovery Project (DP150103905)

    Secure Communication with a Wireless-Powered Friendly Jammer

    Get PDF
    In this paper, we propose to use a wireless-powered friendly jammer to enable secure communication between a source node and destination node, in the presence of an eavesdropper. We consider a two-phase communication protocol with fixed-rate transmission. In the first phase, wireless power transfer is conducted from the source to the jammer. In the second phase, the source transmits the information-bearing signal under the protection of a jamming signal sent by the jammer using the harvested energy in the first phase. We analytically characterize the long-time behavior of the proposed protocol and derive a closed-form expression for the throughput. We further optimize the rate parameters for maximizing the throughput subject to a secrecy outage probability constraint. Our analytical results show that the throughput performance differs significantly between the single-antenna jammer case and the multi-antenna jammer case. For instance, as the source transmit power increases, the throughput quickly reaches an upper bound with single-antenna jammer, while the throughput grows unbounded with multi-antenna jammer. Our numerical results also validate the derived analytical results.Comment: accepted for publication in IEEE Transactions on Wireless Communication

    Secrecy Enhancement in Cooperative Relaying Systems

    Get PDF
    Cooperative communications is obviously an evolution in wireless networks due to its noticeable advantages such as increasing the coverage as well as combating fading and shadowing effects. However, the broadcast characteristic of a wireless medium which is exploited in cooperative communications leads to a variety of security vulnerabilities. As cooperative communication networks are globally expanded, they expose to security attacks and threats more than ever. Primarily, researchers have focused on upper layers of network architectures to meet the requirements for secure cooperative transmission while the upper-layer security solutions are incapable of combating a number of security threats, e.g., jamming attacks. To address this issue, physical-layer security has been recommended as a complementary solution in the literature. In this thesis, physical layer attacks of the cooperative communication systems are studied, and corresponding security techniques including cooperative jamming, beamforming and diversity approaches are investigated. In addition, a novel security solution for a two-hop decode-and-forward relaying system is presented where the transmitters insert a random phase shift to the modulated data of each hop. The random phase shift is created based on a shared secret among communicating entities. Thus, the injected phase shift confuses the eavesdropper and secrecy capacity improves. Furthermore, a cooperative jamming strategy for multi-hop decode-and-forward relaying systems is presented where multiple non-colluding illegitimate nodes can overhear the communication. The jamming signal is created by the transmitter of each hop while being sent with the primary signal. The jamming signal is known at the intended receiver as it is according to a secret common knowledge between the communicating entities. Hence, artificial noise misleads the eavesdroppers, and decreases their signal-to-noise-ratio. As a result, secrecy capacity of the system is improved. Finally, power allocation among friendly jamming and main signal is proposed to ensure that suggested scheme enhances secrecy
    corecore