83 research outputs found

    Secrecy and Energy Efficiency in Massive MIMO Aided Heterogeneous C-RAN: A New Look at Interference

    Get PDF
    In this paper, we investigate the potential benefits of the massive multiple-input multiple-output (MIMO) enabled heterogeneous cloud radio access network (C-RAN) in terms of the secrecy and energy efficiency (EE). In this network, both remote radio heads (RRHs) and massive MIMO macrocell base stations (BSs) are deployed and soft fractional frequency reuse (S-FFR) is adopted to mitigate the inter-tier interference. We first examine the physical layer security by deriving the area ergodic secrecy rate and secrecy outage probability. Our results reveal that the use of massive MIMO and C-RAN can greatly improve the secrecy performance. For C-RAN, a large number of RRHs achieves high area ergodic secrecy rate and low secrecy outage probability, due to its powerful interference management. We find that for massive MIMO aided macrocells, having more antennas and serving more users improves secrecy performance. Then we derive the EE of the heterogeneous C-RAN, illustrating that increasing the number of RRHs significantly enhances the network EE. Furthermore, it is indicated that allocating more radio resources to the RRHs can linearly increase the EE of RRH tier and improve the network EE without affecting the EE of the macrocells.Comment: 26 pages, 11 figures, to appear in IEEE Journal of Selected Topics in Signal Processin

    Full-Duplex Cloud Radio Access Network: Stochastic Design and Analysis

    Get PDF
    Full-duplex (FD) has emerged as a disruptive communications paradigm for enhancing the achievable spectral efficiency (SE), thanks to the recent major breakthroughs in self-interference (SI) mitigation. The FD versus half-duplex (HD) SE gain, in cellular networks, is however largely limited by the mutual-interference (MI) between the downlink (DL) and the uplink (UL). A potential remedy for tackling the MI bottleneck is through cooperative communications. This paper provides a stochastic design and analysis of FD enabled cloud radio access network (C-RAN) under the Poisson point process (PPP)-based abstraction model of multi-antenna radio units (RUs) and user equipments (UEs). We consider different disjoint and user-centric approaches towards the formation of finite clusters in the C-RAN. Contrary to most existing studies, we explicitly take into consideration non-isotropic fading channel conditions and finite-capacity fronthaul links. Accordingly, upper-bound expressions for the C-RAN DL and UL SEs, involving the statistics of all intended and interfering signals, are derived. The performance of the FD C-RAN is investigated through the proposed theoretical framework and Monte-Carlo (MC) simulations. The results indicate that significant FD versus HD C-RAN SE gains can be achieved, particularly in the presence of sufficient-capacity fronthaul links and advanced interference cancellation capabilities
    • …
    corecore